2.0%
The a-effect of the silicon moiety may also help to promote
the organosamarium pathway. Most of the reactions gave the
reduced aldol products in ca. 20% yield as a side product.
Formation of the aldol side product also supports the organosa-
marium pathway. If the reaction occurs via a diradical pathway,
the carbonyl moiety might be reduced to a b-OH moiety.
However, only the desilylated aldol products (up to 20%) were
obtained and confirmed.
R2
O
2.5%
CH3
O
R1
CH2CH3
CH3
_
R3
H
H
R4
Ph
SmI2
O
Si
Si
OH
H
CH3
A
Fig. 1 NOE correlations of b-hydroxy cyclic silyl ether.
The authors acknowledge the financial support of the Korea
Research Foundation.
Si
O
HO
Notes and references
Br
1 (a) G. A. Molander and C. R. Harris, Tetrahedron, 1998, 55, 3321; (b)
G. A. Molander and C. R. Harris, Chem. Rev., 1996, 96, 307; (c) G. A.
Molander, Chem. Rev., 1992, 92, 29; B. M. Trost, Comprehensive of
Organic Synthesis, 1991, vol. 1, p. 235; (d) J. A. Soderquist,
Aldrichchim. Acta., 1991, 24, 15; (e) H. B. Kagan and J. L. Namy,
Tetrahedron, 1986, 42, 6573.
Si
2d
O
O
i
+
OH
1d
2 G. A. Molander and C. R. Harris, J. Org. Chem., 1997, 62, 2944; G. A.
Molander and C. del Pozo, J. Org. Chem.,1997, 62, 2935; G. A.
Molander and C. R. Harris, J. Org. Chem., 1997, 62, 7418; C. F. Sturino
and A. G. Fallis, J. Am. Chem. Soc., 1995, 116, 7447; Z. Zhou and S. M.
Bennett, Tetrahedron Lett., 1997, 1153.
3 D. C. Ha, C. S. Yun and E. Yu, Tetrahedron Lett., 1996, 37, 2577; J. E.
Baldwin and M. G. Moloney, Tetrahedron, 1994, 50, 9411; J. M.
Aurreoechea and M. S. Spizua, Heterocycles, 1994, 37, 223; S. I.
Fukuzawa and T. Tsuchimoto, Synlett, 1993, 803.
4 G. A. Molander and C. R. Harris, J. Am. Chem. Soc., 1997, 117, 3705;
G. A. Molander and J. A. Mckie, J. Org. Chem., 1991, 56, 4112.
5 G. A. Molander, J. B. Etter and L. S. Harry, J. Am. Chem. Soc., 1991,
113, 8036.
6 M. Carpiatero, A. F. Mayorals and C. Jaramillo, J. Org. Chem., 1997,
62, 1916; T. Wirth, Angew. Chem., Int. Ed. Engl., 1996, 35, 61; J. L.
Chiara, W. Cabri and S. Hanessian, Tetrahedron Lett., 1991, 32,
1125.
7 G. A. Molander and C. L. Pozo Losada, J. Org. Chem., 1997, 62, 2935;
M. K. Schwarbe and R. P. Little, Synth. Commun., 1997, 27, 837; G. A.
Molander and S. R. Shakya, J. Org. Chem., 1996, 61, 5885; T. K. Sarkar
and S. K. Nancy, Tetrahedron Lett., 1996, 37, 5195.
8 J. M. Arrecoechea, A. Arricta and F. P. Cossio, J. Org. Chem., 1997, 62,
1125; M. Murakami, M. Hayashi, Y. Ito, F. Pallemer, J. Collin and
H. B. Kagan, Appl. Organomet. Chem., 1995, 9, 385; D. P. Curran and
M. J. Totleben, J. Am. Chem. Soc., 1992, 114, 6050; D. P. Curran and
P. Wipf, J. Org. Chem., 1992, 57, 1740.
9 Z. Zhou, D. Larouche and S. M. Bemelt, Tetrahedron, 1995, 51, 11623;
C. F. Stariro and A. G. Fallis, J. Am. Chem. Soc., 1994, 116, 7447;
G. A. Molander and J. A. Mckie, J. Org. Chem., 1993, 58, 7126.
10 T. Skrydstrup, Angew. Chem., Int. Ed. Engl., 1997, 36, 345.
11 S. Bogen, M. Journet, and M. Malacria, Synth. Commun., 1994, 24,
1215; M. Journet, W. Smadja and M. Malacria, Synlett, 1991, 320; M.
Koreeda and L. G. Hanmann, J. Am. Chem. Soc., 1990, 112, 8175; K.
Tamao, K. Maeda, T. Yamaguchi and Y. Ito, J. Am. Chem. Soc., 1989,
111, 4984.
12 K. Tamao, N. Ishida, T. Tanaka and M. Kumada, Organometallics,
1983, 2, 1694. The product 1l was smoothly converted into the triols in
70% yield via Tamao oxidation. The structure was determined by 1H
NMR and EI mass spectroscopy (m/z 236, 85%).
4
Scheme 3 Reagents and conditions: i, SmI2 (2.2 equiv.), HMPA (4 equiv.),
THF, 278 °C.
4 (20%) which is formed by elimination of the siloxy moiety as
shown in Scheme 3.
In the reaction mechanism, there are two possible process; a
radical–radical coupling process and a samarium Grignard-type
anion process (Scheme 4). In the radical–radical coupling
reaction, 2 equiv. of SmI2 generates both a ketyl radical and an
alkyl radical which couple each other. On the other hand, the
organosamarium Grignard-type species, which could be gen-
erated from an alkyl radical by one more electron transfer from
SmI2, could add to the carbonyl group. Since the reactivity of
primary alkyl bromides with SmI2 is higher than that of
carbonyl groups, it can be considered that the organosamarium
Grignard-type process is more favorable.
Br
Si
O
Si
HO
R1
O
O
2 SmI2
R4
R1
R4
R2
2a
R3
R3
R2
1
H+
2 SmI2
I2Sm
O
Si
Si
O
O
I2SmO
R1
R4
R1
R4
13 S. Ichikawa, S. Shuto, N. Minakawa and A. Matsuda, J. Org. Chem.,
1997, 62, 1368.
14 D. A. Evans, E. Vogel and J. V. Nelson, J. Am. Chem. Soc., 1979, 101,
6120.
R2
R3
R3
R2
Scheme 4
Communication 8/07736C
2746
Chem. Commun., 1998, 2745–2746