Synthesis of Multi-phenanthroline Ligands
FULL PAPER
tional Cs2CO3 (1.8 g) and olefinic chain (0.700 g, 2.05 mmol) were added.
After stirring at 658C under argon overnight, the mixture was evaporated
to dryness. The solid residue was washed four times with Et2O ( to
remove excess olefinic chain) and thereafter suspended in water. The
ochre-beige precipitate was filtered through paper and washed with
water before being dried in air on a porous dish. Compound 2 thus ob-
tained in 62% yield (0.520 g, 0.273 mmol) was used without further puri-
fication. 1H NMR (500 MHz, CD2Cl2): d=9.78 (brs, 2H, H-a), 9.69 (brs,
2H, H-a’), 8.63 (d, J=7.9 Hz, 2H, H-d’), 8.60 (d, J=7.3 Hz, 2H, H-d),
8.54 (m, 4H, H-b,b’), 8.41 (d, J=8.6 Hz, 4H, H-o), 8.36 (brs, 4H, H-
7’,8’), 8.30 (d, J=7.9 Hz, 2H, H-3’’), 8.29 (d, J=7.7 Hz, 2H, H-3,8), 8.27
(d, J=8.2 Hz, 2H, H-3’), 8.21 (d, J=8.6 Hz, 2H, H-7’’), 8.10 (d, J=
8.2 Hz, 2H, H-4’), 8.08 (d, J=8.6 Hz, 2H, H-8’’), 8.05 (d, J=7.7 Hz, 2H,
H-4,7), 8.04 (d, J=7.9 Hz, 2H, H-4’’), 7.72 (t, J=7.9 Hz, 2H, H-c’), 7.66
(t, J=7.3 Hz, 2H, H-c), 7.64 (d, J=8.6 Hz, 2H, H-6’), 7.57 (d, J=8.6 Hz,
2H, H-6’’), 7.55 (d, J=8.6 Hz, 2H, H-5’), 7.45 (d, J=8.6 Hz, 2H, H-5’’),
7.37 (s, 2H, H-5,6), 7.03 (d, J=8.6 Hz, 4H, H-m), 5.88–5.85 (m, 2H, H-
L), 5.26–5.11 (m, 4H, H-M), 4.17 (t, J=4.1 Hz, 4H, H-A), 3.97–3.93 (m,
4H, H-K), 3.87 (t, J=4.1 Hz, 4H, H-B), 3.76–3.50 (m, 32H, H-C,D,E,F,-
(d, J=8.5 Hz, 8H, H-m), 5.27–5.14 (m, 8H, H-M), 3.97 (td, J=5.6 Hz,
8H, H-K), 3.75–3.59 (m, 64H, H-C,D,E,F,G,H,I,J), 3.55 (m, 8H, H-B),
3.34 ppm (m, 8H, H-A); HR ES-MS: m/z: m/3 at 1414.1270
([(2)2·3Li·2Cu]5+·(2PF6)2À), calcd 1414.O986; m/4 at 1024.3433
([(2)2·3Li·2Cu]5+·(PF6)À),
calcd
1024.3329;
m/5
at
790.4849
([(2)2·3Li·2Cu]5+), calcd 790.4735; m/3 at 1363.4724 ([(2)2·2Li·2Cu]4+
·(PF6)À), calcd 1363.4639; m/4 at 986.3486 ([(2)2·2Li·2Cu]4+), calcd
986.3569.
[1] a) For early work, see: G. Schill, Catenanes, Rotaxanes and Knots,
Academic Press, New York and London, 1971; b) for the first cop-
per(i)-templated synthesis of a catenane, see: C. O. Dietrich-Bu-
checker, J.-P. Sauvage, J.-P Kintzinger, Tetrahedron Lett. 1983, 24,
5095.
[2] a) C. O. Dietrich-Buchecker, J.-P. Sauvage, J.-M. Kern, J. Am. Chem.
Soc. 1984, 106, 3043; b) C. O. Dietrich-Buchecker, J.-P. Sauvage, Tet-
rahedron 1990, 46, 503.
[3] a) Molecular Catenanes, Rotaxanes and Knots, (Eds.: J.-P. Sauvage,
C. Dietrich-Buchecker), Wiley-VCH, Weinheim, 1999; b) F. Vçgtle,
T. Dꢁnnwald, T. Schmidt, Acc. Chem. Res. 1996, 29, 451; c) M.
Fujita, Acc. Chem. Res. 1999, 32, 53; d) Special Issue of New. J.
Chem. 1993, 17, June issue; guest editor: J.-P. Sauvage; e) C. O. Die-
trich-Buchecker, J.-P. Sauvage, Angew. Chem. 1989, 101, 192;
Angew. Chem. Int. Ed. Engl. 1989, 28, 189; f) C. O. Dietrich-Bu-
checker, J. Guilheim, C. Pascard, J.-P. Sauvage, Angew. Chem. 1990,
102, 1202; Angew. Chem. Int. Ed. Engl. 1990, 29, 1154.
[4] a) L. Hogg, D. A. Leigh, P. J. Lusby, A. Morelli, S. Parsons, J. K. Y.
Wong, Angew. Chem. 2004, 116, 1238; Angew. Chem. Int. Ed. 2004,
43, 1218; b) D. A. Leigh, P. J. Lusby, S. J. Teat, A. J. Wilson, J. K. Y.
Wong, Angew. Chem. 2001, 113, 1586; Angew. Chem. Int. Ed. 2001,
40, 1538.
G,H,I,J); ES-MS: m/z: 1902.8 [M+H]+, calcd 1903.2; 952.0 [M+2H]2+
calcd 952.1; 634.9 [M+3H]3+, calcd 635.0.
,
Lithium complex [(2)2·5Li]5+C(5PF6)5À: LiPF6 (145 mg, 0.95 mmol) dis-
solved in MeOH (30 mL) was added to the brown solution of 2 (565 mg,
0.297 mmol) in CH2Cl2 (100 mL) at room temperature under a stream of
argon. Upon addition of LiPF6 the acidic solution (pH 3) was neutralized
by the addition of small amounts of solid Li2CO3 and three drops of
water. The resulting mixture was stirred under argon overnight. Monitor-
ing by 1H NMR spectroscopy allowed us to determine the necessary
amount of Li2CO3 needed for the formation of the lithium complex. At
the end of the reaction the solvents were evaporated to dryness to afford
crude complex [(2)2·5Li]5+·(5PF6)5À (515 mg, 0.113 mmol) as an ochre
glass in 76% yield. 1H NMR (300 MHz, CD2Cl2): d=8.14 (d, J=8.4 Hz,
4H, H-7’’), 7.76 (d, J=9.0 Hz, 4H, H-6’’), 7.64 (m, 16H, H-a’, H-5’’,5’,6’),
7.54 (s, 4H, H-5,6), 7.53 (d, J=8.4 Hz, 4H, H-4’’), 7.50 (d, J=8.4 Hz, 4H,
H-7’), 7.47 (d, J=8.4 Hz, 4H, H-4’), 7.37 (d, J=8.8 Hz, 4H, H-4,7), 7.34
(d, J=8.4 Hz, 4H, H-8’’), 7.24 (brs, 4H, H-a), 6.96 (t, J=7.7 Hz, 4H, H-
c’), 6.88 (t, J=7.5 Hz, 4H, H-c), 6.66 (d, J=7.7 Hz, 4H, H-d’), 6.65 (d,
J=8.6 Hz, 8H, H-o), 6.59 (d, J=6.4 Hz, 4H, H-b’), 6.57 (d, J=8.2 Hz,
4H, H-d), 6.49 (d, J=7.5 Hz, 4H, H-b), 6.10 (d, J=8.4 Hz, 4H, H-8’),
6.05 (d, J=8.4 Hz, 4H, H-3’’), 5.94 (d, J=8.4 Hz, 4H, H-3’), 5.90 (d, J=
8.8 Hz, 4H, H-3,8), 5.90–5.77 (m, 4H, H-L), 5.56 (d, J=8.6 Hz, 8H, H-
m), 5.26–5.14 (m, 8H, H-M), 3.98 (td, J=5.9 Hz, 8H, H-K), 3.75–3.63
(m, 64H, H-C,D,E,F,G,H,I,J), 3.60 (m, 8H, H-B), 3.32 ppm (m, 8H, H-
A); HR ES-MS: m/z: m/2 at 2136.8278 ([(2)2·5Li]5+·(3PF6)3À), calcd
2137.0241; m/3 at 1376.1988 ([(2)2·5Li]5+·(2PF6)2À), calcd 1376.3613; m/4
at 995.9139 ([(2)2·5Li]5+·(PF6)À), calcd996.0299; m/5 at 767.7443
([(2)2·5Li]5+), calcd 767.8311; m/2 at 2060.8009 ([(2)2·4Li]4+·(2PF6)2À),
calcd 2061.0720; m/3 at 1325.5394 ([(2)2·4Li]4+·(PF6)À) calcd 1325.7266;
m/4 at 958.1637 ([(2)2·4Li]4+), calcd 958.0539.
[5] K. S. Chichak, S. J. Cantrill, A. R. Pease, S.-H. Chiu, G. W. V. Cave,
J. L. Atwood, J. F. Stoddart, Science 2004, 304, 1308.
[6] a) J. H. Fuhrhop, G. Struckmeier, U. Thewalt, J. Am. Chem. Soc.
1976, 98, 278; b) G. C. van Stein, H. van der Poel, G. van Koten, J.
Chem. Soc., Chem. Commun. 1980, 1016; c) T. W. Bell, H. Jousselin,
Nature 1994, 367, 441.
[7] a) J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, D.
Moras, Proc. Natl. Acad. Sci. USA 1987, 84, 2565; b) J.-M. Lehn, A.
Rigault, Angew. Chem. 1988, 100, 1121; Angew. Chem. Int. Ed. Engl.
1988, 27, 1095; c) for a discussion on the formation of polycopper
helicates and the selectivity of the process, see: A. Marquis-Rigault,
A. Dupont-Gervais, A. van Dorsselaer, J.-M. Lehn, Chem. Eur. J.
1996, 2, 1395; d) E. C. Constable, M. G. B. Drew, M. D. Ward, J.
Chem. Soc., Chem. Commun. 1987, 1600; e) E. C. Constable, M. D.
Ward, J. Am. Chem. Soc. 1990, 112, 1256.
[8] a) A. F. Williams, C. Piguet, G. Bernardinelli, Angew. Chem. 1991,
103, 1530; Angew. Chem. Int. Ed. Engl. 1991, 30, 1490; b) R.
Krꢂmer, J.-M. Lehn, A. De Cian, J. Fisher, Angew. Chem. 1993, 105,
764; Angew. Chem. Int. Ed. Engl. 1993, 32, 703; c) C. Provent, S.
Hewage, G. Brand, G. Bernardinelli, L. J. Charbonniꢃre, A. F. Wil-
liams, Angew. Chem. 1997, 109, 1346; Angew. Chem. Int. Ed. Engl.
1997, 36, 1287; d) D. L. Coulder, K. N. Raymond, Angew. Chem.
1997, 109, 1550; Angew. Chem. Int. Ed. Engl. 1997, 36, 1440.
[9] J.-P. Sauvage, Acc. Chem. Res. 1990, 23, 319.
Heteronuclear
Li–Cu
complexes
[(2)2·3Li·2Cu]5+·(5PF6)5À
and
À
[(2)2·2Li·2Cu]4+·(4PF6)4À: A degassed solution of [Cu(CH3CN)4]+·PF6
(44 mg, 0.118 mmol) in CH3CN (30 mL) was slowly added through a can-
nula to the degassed, ochre solution of [(2)2·5Li]5+·(5PF6)5À (262 mg,
0.0574 mmol) in CH2Cl2 (70 mL) at room temperature. After half an
hour all the copper had been added and the resulting solution was stirred
at room temperature and under argon for 48 h during which time the ini-
tial ochre solution gradually turned dark red. The solvents were then
evaporated to dryness to afford [(2)2·3Li·2Cu]5+·(5PF6)5À (267 mg,
[10] C. Dietrich-Buchecker, J.-P. Sauvage, Chem. Commun. 1999, 615.
[11] C. C. Adams, The Knot Book, W. H. Freeman and Co., New York,
1994.
0.057 mmol) in quantitative yield as
a
dark-red solid. 1H NMR
(500 MHz, CD2Cl2 + MeOD + ascorbic acid): d=8.33 (brs, 4H, H-a’),
8.16 (d, J=8.5 Hz, 4H, H-7’’), 7.78 (d, J=9.0 Hz, 4H, H-6’’), 7.65 (d, J=
9.0 Hz, 4H, H-5’’), 7.63 (AB, J=8.8 Hz, 8H, H-5’,6’), 7.56 (s, 8H, H-5,6),
7.52 (d, J=8.4 Hz, 4H, H-4’’), 7.48 (d, J=8.2 Hz, 4H, H-7’), 7.46 (d, J=
8.1 Hz, 4H, H-4’), 7.41 (d, J=8.5 Hz, 4H, H-8’’), 7.38 (d, J=8.2 Hz, 4H,
H-4,7), 7.23 (brs, 4H, H-a), 6.91 (t, J=7.5 Hz, 4H, H-c’), 6.88 (t, J=
7.5 Hz, 4H, H-c), 6.75 (d, J=8.5 Hz, 8H, H-o), 6.61 (d, J=7.5 Hz, 4H,
H-d’), 6.59–6.55 (m, 8H, H-d,b’), 6.50 (d, J=7.5 Hz, 4H, H-b), 6.11 (d,
J=8.1 Hz, 4H, H-3’), 6.04 (d, J=8.4 Hz, 4H, H-3’’), 5.95 (d, J=8.2 Hz,
4H, H-8’), 5.90 (d, J=8.2 Hz, 4H, H-3,8), 5.93–5.85 (m, 4H, H-L), 5.52
[12] C. O. Dietrich-Buchecker, J.-P. Sauvage, A. De Cian, J. Fischer, J.
Chem. Soc. Chem. Commun. 1994, 2231.
[13] J. Lewis, T. D. OꢄDonoghue, J. Chem. Soc., Dalton Trans. 1980, 736.
[14] C. O. Dietrich-Buchecker, P. A. Marnot, J. P. Sauvage, Tetrahedron
Lett. 1982, 23, 5291.
[15] C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, N. Ar-
maroli, V. Balzani, L. De Cola, J. Am. Chem. Soc. 1993, 115, 11237.
[16] G. S. Hanan, U. S. Schubert, D. Volkmer, E. Riviꢃre, J.-M. Lehn, N.
Kyristsakas, J. Fischer, Can. J. Chem. 1997, 75, 169.
[17] C. L. Nesloney, J. W. Kelly, J. Org. Chem. 1996, 61, 3217.
Chem. Eur. J. 2005, 11, 4374 – 4386
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4385