Foundation) under Germany’s Excellence Strategy – Exzellenzcluster
2186 „The Fuel Science Center“ ID: 390919832. The authors thank
ERC Advanced Grant (MONACAT 2015-694159). Fruitful discussion
on the dynamics of NP catalysts with Prof. Robert Schlögl is gratefully
acknowledged by W.L. C.V.S. would like to thank the IMPRS-RECHARGE
for funding. Use of the Stanford Synchrotron Radiation Lightsource,
SLAC National Accelerator Laboratory, was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
under Contract No. DE-AC02-76SF00515. For experiments performed
at beamline 9-3 of SSRL, the authors would like to thank Dr. Matthew
Latimer for assistance. The authors acknowledge the Paul Scherrer
Institut, Villigen, Switzerland for provision of synchrotron radiation
beamtime at beamline SuperXAS of the SLS and would like to thank
Dr. Maarten Nachtegaal for assistance. The authors acknowledge DESY
(Hamburg, Germany), a member of the Helmholtz Association HGF,
for the provision of experimental facilities. For parts of this research
carried out at PETRA III, the authors would like to thank Dr. Edmund
Welter for assistance in using beamline P65. The research leading to
these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 312284. Furthermore, authors would like to thank Josef
Vaeßen (ITMC, RWTH Aachen) for BET absorption measurements,
Hannelore Eschmann and Elke Biener (ITMC, RWTH Aachen) as
well as Annika Gurowski, Alina Jakubowski, and Justus Werkmeister
(MPI-CEC) for GC and GC-MS measurements, Norbert Pfänder
(MPI-CEC), Adrian Schülter, Silvia Palm (MPI-Kofo), Simon Cayez
(LPCNO) and Maria Teresa Hungria (Centre de MicroCaractérisation
Raimond Castaing) for help concerning TEM, STEM-HAADF-EDX
and SEM-EDX analyses, and Claudia Weidenthaler for XRD
measurements.
[4] a) D. Wang, Y. Li, Adv. Mater. 2011, 23, 1044; b) M. Sankar,
N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J. Kiely, G. J. Hutchings,
Chem. Soc. Rev. 2012, 41, 8099; c) J. Lee, Y. T. Kim, G. W. Huber,
Green Chem. 2014, 16, 708; d) D. M. Alonso, S. G. Wettstein,
J. A. Dumesic, Chem. Soc. Rev. 2012, 41, 8075.
[5] a) G. A. Somorjai, Introduction to Surface Chemistry and Catalysis,
Wiley, New York 1994, pp. 500–512; b) G. W. Huber, J. W. Shabaker,
J. A. Dumesic, Science 2003, 300, 2075.
[6] D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu,
A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight,
G. J. Hutchings, Science 2006, 311, 362.
[7] F. Maroun, F. Ozanam, O. M. Magnussen, R. J. Behm, Science 2001,
293, 1811.
[8] a) L. Zhang, M. Zhou, A. Wang, T. Zhang, Chem. Rev. 2020, 120, 683;
b) A. Sánchez, M. Fang, A. Ahmed, R. A. Sánchez-Delgado, Appl. Catal.,
A 2014, 477, 117; c) J. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic,
J. G. Chen, G. W. Graham, X. Pan, P. Christopher, Nat. Chem. 2017,
9, 120; d) A. Karakulina, A. Gopakumar, Z. Fei, P. J. Dyson, Catal. Sci.
Technol. 2018, 8, 5019; e) C. Deraedt, R. Ye, W. T. Ralston, F. D. Toste,
G. A. Somorjai, J. Am. Chem. Soc. 2017, 139, 18084.
[9] a) A. Wong, Q. Liu, S. Griffin, A. Nicholls, J. R. Regalbuto, Science
2017, 358, 1427; b) K. Ding, D. A. Cullen, L. Zhang, Z. Cao, A. D. Roy,
I. N. Ivanov, D. Cao, Science 2018, 362, 560; c) S. H. Hakim, C. Sener,
A. C. Alba-Rubio, T. M. Gostanian, B. J. O’Neill, F. H. Ribeiro,
J. T. Miller, J. A. Dumesic, J. Catal. 2015, 238, 75.
[10] a) P. Migowski, K. L. Luska, W. Leitner, In Nanocatalysis in Ionic
Liquids (Ed: M. H. G. Prechtl), Wiley VCH, Weinheim 2016;
b) R. Fehrmann, A. Riisager, M. Haumann, Supported Ionic Liquids:
Fundamentals and Applications, Wiley-VCH Verlag GmbH, Weinheim
2014.
Open access funding enabled and organized by Projekt DEAL.
[11] a) M. A. Gelesky, S. S. X. Chiaro, F. A. Pavan, J. H. Z. dos Santos,
J. Dupont, Dalton Trans. 2007, 5549; b) M. Ruta, G. Laurenczy,
P. J. Dyson, K.-L. Minsker, J. Phys. Chem. 2008, 112, 17814;
c) K. L. Luska, A. Bordet, S. Tricard, I. Sinev, W. Grünert,
B. Chaudret, W. Leitner, ACS Catal. 2016, 6, 3719; d) S. El Sayed,
A. Bordet, C. Weidenthaler, W. Hetaba, K. L. Luska, W. Leitner,
ACS Catal. 2020, 10, 2124; e) A. Bordet, C. Welsh, P. Lience,
K. L. Luska, W. Leitner, ACS Catal. 2020, 10, 13904.
[12] a) K. L. Luska, J. Julis, E. Stavitski, D. N. Zakharov, A. Adams,
W. Leitner, Chem. Sci. 2014, 5, 4895; b) K. L. Luska, P. Migowski,
S. El Sayed, W. Leitner, Angew. Chem., Int. Ed. 2015, 54, 15750;
c) L. Offner-Marko, A. Bordet, G. Moos, S. Tricard, S. Rengshausen,
B. Chaudret, K. L. Luska, W. Leitner, Angew. Chem., Int. Ed. 2018,
57, 12721; d) G. Moos, M. Emondts, A. Bordet, W. Leitner, Angew.
Chem., Int. Ed. 2020, 59, 11977; e) L. Goclik, L. Offner-Marko,
A. Bordet, W. Leitner, Chem. Commun. 2020, 56, 9509.
Conflict of Interest
The authors declare no conflict of interest.
Keywords
bimetallic nanoparticles, catalytic hydrogenation, cobalt-rhodium, SILP,
synergistic
Received: October 27, 2020
Revised: December 2, 2020
Published online: December 21, 2020
[13] S. Rengshausen, F. Etscheidt, J. Großkurth, K. L. Luska, A. Bordet,
W. Leitner, Synlett 2019, 30, 405.
[1] K. D. Gilroy, A. Ruditskiy, H.-C. Peng, D. Qin, Y. Xia, Chem. Rev.
2016, 116, 10414.
[14] D. Zitoun, C. Amiens, B. Chaudret, M.-C. Fromen, P. Lecante,
M.-J. Casanove, M. Respaud, J. Phys. Chem. B 2003, 107, 6997.
[15] H. F. J. Van’t Blik, D. C. Koningsberger, R. Prins, J. Catal. 1986, 97,
210.
[16] J. H. Park, Y. K. Chung, Dalton Trans. 2008, 18, 2369.
[17] I. Choi, H. Chung, J. W. Park, Y. K. Chung, Org. Lett. 2016, 18, 5508.
[18] a) F. Benseradj, F. Sadi, M. Chater, C. R. Chim. 2004, 7, 669;
b) X. Zheng, Y. Lin, H. Pan, L. Wu, W. Zhang, L. Cao, J. Zhang,
L. Zheng, T. Yao, Nano Res. 2018, 11, 2357; c) H. Kusama, K. Okabe,
K. Sayama, H. Arakawa, Appl. Organomet. Chem. 2000, 14, 836.
[19] B. J. Hwang, L. S. Sarma, J. M. Chen, C. H. Chen, S. C. Shin,
Q. R. Wang, D. G. Liu, J. F. Lee, M. T. Tang, J. Am. Chem. Soc. 2005,
127, 11140.
[2] a) G. Mattei, P. Mazzoldi, M.L. Post, D. Buso, M. Guglielmi,
A. Martucci, Adv. Mater. 2007, 19, 561; b) D. A. Garfinkel, G. Pakeltis,
N. Tang, I. N. Ivanov, J. D. Fowlkes, D. A. Gilbert, P. D. Rack,
ACS Omega 2020, 5, 19285; c) A. Y. Soloveva, N. K. Eremenko,
I. I. Obraztsova, A. N. Eremenko, S. P. Gubin, Russ. J. Inorg. Chem.
2018, 63, 444; d) S. Thota, Y. Wang, J. Zhao, Mater. Chem. Front.
2018, 2, 1074.
[3] a) S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 2000,
287, 1989; b) I.-C. Chiang, D.-H. Chen, Adv. Funct. Mater. 2007,
8, 1311; c) K. I. M. da Silva, F. Bernardi, G. Abarca, D. L. Baptista,
M. J. L. Santos, L. F. Barquin, J. Dupont, I. del Pedro, Phys. Chem.
Chem. Phys. 2018, 20, 10247; d) V. Amendola, S. Scaramuzza,
L. Litti, M. Meneghetti, G. Zuccolotto, A. Rosato, E. Nicolato,
P. Marzola, G. Fracasso, C. Anselmi, M. Pinto, M. Colombatti,
Small 2014, 12, 2476.
[20] a) J. S. Bradley, E. W. Hill, B. Chaudret, A. Duteil, Langmuir
1995, 11,
693; b) M. Cokoja, H. Parala, A. Birkner, R. A. Fischer, O. Margeat,
D. Ciuculescu, C. Amiens, B. Chaudret, A. Falqui, P. Lecante, Eur. J.
Inorg. Chem. 2010, 11, 1599; c) C. H. Wu, C. Liu, D. Su, H. L. Xin,
2006683 (9 of 10)
© 2020 The Authors. Small published by Wiley-VCH GmbH
Small 2021, 17, 2006683