Deuterated-Alkene Synthesis
COMMUNICATION
[7] For selected recent papers on direct deuteration of various com-
pounds except alkenes, see: a) M. H. Emmert, J. B. Gary, J. M. Villa-
Int. Ed. 2010, 49, 5884; b) A. Di Giuseppe, R. Castarlenas, J. J.
Pꢃrez-Torrente, F. J. Laho, V. Polo, L. A. Oro, Angew. Chem. 2011,
123, 4024; Angew. Chem. Int. Ed. 2011, 50, 3938; c) L. Neubert, D.
Michalik, S. Bꢄhn, S. Imm, H. Neumann, J. Atzrot, B. Derau, W.
hart, K. A. Manbeck, S. K. Buzak, G. M. Lippa, W. W. Brennessel,
Experimental Section
Typical procedure for the deuteration of alkynes (Figure 1): Et3N
(1.1 mmol) was added to a solution of an alkyne (1 mmol) in D2O/THF
(1:1 mL) at room temperature under an argon atmosphere and the reac-
tion mixture was stirred for the appropriate duration, as indicated in
Figure 1. The resulting mixture was diluted with Et2O or hexanes (2 mL)
and separated into two layers. The aqueous layer was then further ex-
tracted with Et2O or hexanes (2 mLꢂ2). The combined organic layers
were dried over Na2SO4 and concentrated under vacuum to give analyti-
cally pure product.
[8] We have also developed deuterium-labeling methods for aromatics,
alcohols, and alkanes, and so forth, by using a heterogeneous plati-
num-group metal on carbon as catalysts. See: a) H. Sajiki, K. Hat-
Sajiki, T. Kurita, H. Esaki, F. Aoki, T. Maegawa, K. Hirota, Org.
Esaki, F. Aoki, H. Sajiki, K. Hirota, Synlett 2005, 845; e) H. Sajiki,
Esaki, F. Aoki, T. Maegawa, K. Hirota, H. Sajiki, Heterocycles 2005,
66, 361; g) H. Sajiki, N. Ito, H. Esaki, T. Maesawa, T. Maegawa, K.
i) H. Esaki, N. Ito, S. Sakai, T. Maegawa, Y. Monguchi, H. Sajiki,
4052; k) H. Esaki, R. Ohtaki, T. Maegawa, Y. Monguchi, H. Sajiki,
m) N. Ito, T. Watahiki, T. Maesawa, T. Maegawa, H. Sajiki, Synthesis
2008, 9, 1467; n) T. Kurita, K. Hattori, S. Seki, T. Mizumoto, F.
Aoki, Y. Yamada, K. Ikawa, T. Maegawa, Y. Monguchi, H. Sajiki,
Maejima, H. Esaki, T. Maegawa, Y. Monguchi, H. Sajiki, Chem.
[9] For direct H–D exchange reactions of alkenes to form [Dn]alkenes,
see: a) B. Rybtchinski, R. Cohen, Y. Ben-David, J. M. L. Martin, D.
[10] For various stepwise syntheses of deuterated alkenes from nondeu-
terated alkynes, carbonyl compounds, and so forth, as the starting
materials, see: a) M. Julia, J.-P. Stacino, Bull. Soc. Chim. Fr. 1985,
831; b) H.-S. Choi, R. L. Kuczkowski, J. Org. Chem. 1985, 50, 901;
c) N. H. Werstiuk, G. Timmins, Can. J. Chem. 1986, 64, 1072; d) G.
Zimmermann, B. Ondruschka, M. Nꢅchter, F.-D. Kopinke, M. Re-
mmler, J. Prakt. Chem. 1994, 336, 415; e) D. Kapeller, R. Barth, K.
Mereiter, F. Hammerschmidt, J. Am. Chem. Soc. 2007, 129, 914.
b) A. Sera, N. Ueda, K. Itoh, H. Yamada, Heterocycles 1996, 43,
2205.
Typical procedure for the synthesis of [D3]alkenes (Figure 2): A flask
was charged with a mixture of the substrate (0.25 mmol) and Pd/BN
(0.3%; 0.03 mol% of the substrate) in pyridine (1 mL). After the reac-
tion flask was depressurized, previously prepared D2 (further details are
provided in the Supporting Information) was allowed to flow into the re-
action flask. After stirring for 6 h at room temperature, the resulting mix-
ture was diluted with Et2O or hexanes (5 mL) and then filtered through a
pad of Celite. The filtrate separated into two layers and was treated with
1m aqueous HCl (20 mL). The organic layer was separated and washed
with H2O (10 mL). The combined organic layers were dried over Na2SO4
and concentrated under vacuum to give the analytically pure product.
Keywords: alkenes · alkynes · deuterium · palladium ·
regioselectivity
[1] For mechanistic elucidation of chemical and/or enzymatic reactions,
see, for examples: a) T. H. Lowry, K. S. Richardson, Mechanism and
Theory in Organic Chemistry, Harper and Row, New York, 1987;
3633; c) D. J. Porter, F. L. Boyd, J. Biol. Chem. 1991, 266, 21616;
Marcus, M. J. Hayman, Y. M. Blau, D. R. Guenther, J. O. Ehres-
McLauchlan, M. A. Wildman, J. O. Ehresmann, P. W. Kletnieks, J. F.
[2] For reaction-rate control in organic synthesis, see: a) M. Miyashita,
b) K. W. Quasdorf, A. D. Huters, M. W. Lodewyk, D. J. Tantillo,
[3] For deuterated polymers, see: a) T. Yoshino, H. Kenjo, K. Kuno, J.
[4] For raw materials of fiber optics, see: a) T. P. Russell, A. Karim, A.
Technol. 2005, 23, 2443.
[5] For deuterium-labeled drugs (heavy drugs), see: a) A. B. Foster,
[15] Y. Yabe, T. Yamada, S. Nagata, Y. Sawama, Y. Monguchi, H. Sajiki,
[16] For recent developments in nickel nanoparticle catalysis for semihy-
drogenation of monosubstituted alkynes, see: M. Zaheer, C. D.
Keenan, J. Hermannsdçrfer, E. Roessler, G. Motz, J. Senker, R.
Kempe, Chem. Mater. 2012, 24, 3952.
[17] The Lindlar catalyst is only applicable to the semihydrogenation of
disubstituted alkynes under H2 gas. Therefore, the method in refer-
ence [14] cannot be adapted to the synthesis of monosubstituted
deuterated alkenes.
[6] For reviews, see: a) J. Atzrodt, V. Derdau, T. Fey, J. Zimmermann,
7744; b) Y. Sawama, Y. Monguchi, H. Sajiki, Synlett 2012, 23, 959.
[18] a) H. Sajiki, S. Mori, T. Ohkubo, T. Ikawa, A. Kume, T. Maegawa,
Chem. Eur. J. 2013, 19, 484 – 488
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
487