ARTICLE
8 Cormier, R. A.; Gregg, B. A. J Phys Chem B 1997, 101,
completion of imidization was confirmed by FTIR analyses.
These copoly(peryleneimide)s posses good solubility in NMP
and can be processed into thin and tough flexible films hav-
ing the thickness in the range of tens of micrometers. SEM
and WAXD data showed the p stacking rods of the copolyi-
mides in thin films. The very thin films deposited on glass
plates by spin-coating with thickness in the range of nano-
metres are smooth and homogeneous, without cracks or pin-
holes, and are self-organized into vertically segregated struc-
tures. The present copolyimides are highly thermostable, up
to 465 ꢀC, and display glass transition in the range of 225–
295 ꢀC, with a large interval between decomposition and Tg
that make these copolyimides appropriate for processing by
a thermoforming technique, as well. X-Rays measurements
indicate a semicrystalline state of the studied polymers, con-
sisting in columns of perylene units arranged face-to-face,
with different orientations and without intercolumnar corre-
lations, statistically distributed into amorphous part of the
polymer. By excitation with light of different wavelengths, all
copolyimides without ether bridges in the main chain exhib-
ited two strong PL maxima in the bluish and green–yellow
domains, due to oxadiazole chromophore and perylenedii-
mide moieties emission, respectively. The PL spectra of
polymers containing ether bridges consist of the emission of
perylenediimide chromophore and conjugated segments with
imide rings, without emission from oxadiazole chromophore,
due to the excitation energy transfer from oxadiazole to per-
ylenediimide moieties. No emission was observed in solid
state. Further research in this field is necessary to study the
suitable perylene content in order to overcome the fluores-
cence quenching through aggregation. The high-performance
properties of these polymers provide an important guideline
for the design of new alternating copolymers that can be
used to fabricate electroluminescent devices with high
stability.
11004–11006.
9 Posch, P.; Thelakkat, M.; Schmidt, H. W. Synth Met 1999,
¨
102, 1110–1112.
10 Niu, H.; Wang, C.; Bai, X.; Huang, Y. Polym Adv Technol
2004, 15, 701–707.
11 Bruma, M.; Sava, I.; Hamciuc, E.; Hamciuc, C.; Damaceanu,
M. D. Rom J Inform Sci Technol 2006, 9, 277–284.
12 Bruma, M.; Damaceanu, M. D.; Muller, P. High Perform
¨
Polym 2009, 21, 522–534.
13 Schulz, B.; Bruma, M.; Brehmer, L. Adv Mater 1997, 9,
601–613.
14 Bruma, M.; Ko†pnick, T. Adv Colloid Interface Sci 2005, 116,
277–290.
15 Damaceanu, M. D.; Rusu, R. D.; Bruma, M.; Rusanov, A. L.
Polym Adv Technol DOI 10.1002/pat.1519.
16 Bruma, M.; Fitch, J. W.; Cassidy, P. E. J Macromol Sci
Polym Rev 1996, 36, 119–159.
17 Lu, W.; Gao, J. P.; Wang, Z. Y.; Qi, Y.; Sacripante, G. G.;
Sundararajan, P. R.; Duff, J. D. Macromolecules 1999, 32,
8880–8885.
18 Hamciuc, E.; Hamciuc, C.; Bruma, M.; Schulz, B. Eur Polym
J 2005, 41, 2989–2997.
19 Bruma, M.; Schulz, B.; Mercer, F. J Macromol Sci Part A:
Pure Appl Chem 1995, 32, 259–286.
20 Iosip, M. D.; Bruma, M.; Robison, J.; Kaminorz, Y.; Schulz,
B. High Perform Polym 2001, 13, 133–148.
21 Butt, M. S.; Akhter, Z.; Zaman, M. Z.; Munir, A. Eur Polym J
2005, 41, 1638–1646.
22 Rusanov, A. L.; Elshina, L. B.; Bulyceva, E. G.; Mullen, K. In
¨
Polymer Yearbook 18, Pethrik, R.; Zaikov, G., Eds.; Polymer
Yearbook Series; Rapra Technology Ltd: Shropshire, UK, 2004,
p 7.
This work was financially supported by Romanian Programs
PNCD-2, contract no. 11008/2007 and TE is warmly acknowl-
edged TE/2010.
23 Icil, H.; Icil, S. J Polym Sci Part A: Polym Chem 1997, 35,
2137–2142.
24 Wang, Z. Y.; Qi, Y.; Gao, J. P.; Sacripante, G. G.; Sundarara-
REFERENCES AND NOTES
jan, P. R.; Duff, J. D. Macromolecules 1998, 31, 2075–2079.
25 Xu, S.; Yang, M.; Bai, F.
J Mater Sci Lett 2002, 21,
1 Yang, M.; Xu, S.; Wang, J.; Ye, H.; Liu, X. J Appl Polym Sci
1903–1905.
2003, 90, 786–791.
26 Yao, D.; Wang, Z. Y.; Sundararajan, P. R. Polymer 2005, 46,
2 Kim, Y.; Lee, J. G.; Han, K.; Hwang, H. K.; Choi, D. K.; Jung,
Y. Y.; Keum, J. H.; Kim, S.; Park, S. S.; Im, W. B. Thin Solid
Films 2000, 363, 263–267.
4390–4396.
27 Hougham, G.; Tesoro, G.; Shaw, J. Macromolecules 1994,
27, 3642–3649.
3 Kim, Y.; Keum, J. H.; Lee, J. G.; Lim, H.; Ha, C. S. Adv Mater
Opt Electron 2000, 10, 273–283.
28 Hougham, G. In Fluoropolymers 2: Properties, Hougham, G.;
Cassidy, P. E.; Johns, K.; Davidson, T., Eds.; Topics in Applied
Chemistry Series; Plenum Press: New York, 1999, p 233.
4 Chern, Y. T.; Chung, W. H. J Polym Sci Part A: Polym Chem
1996, 34, 117–124.
29 Liu, Y.; Wang, K. R.; Guo, D. S.; Jiang, B. P. Adv Funct
5 Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.;
¨
Mater 2009, 19, 2230–2235.
Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119–1122.
6 Liu, Y. J.; Zhuang, P.; Liu, H.; Li, Y.; Lu, F.; Gan, H.; Jiu, T.;
30 Bruma, M.; Damaceanu, M. D. Collect Czech Chem Commun
2008, 73, 1631–1644.
Wang, N.; He, X.; Zhu, D. Chem Phys Chem 2004, 5, 1210–1215.
31 Zugenmaier, P.; Duff, J.; Bluhm, T. L. Cryst Res Technol
7 Xu, S. G.; Yang, M. J.; Cao, S. K. React Funct Polym 2006, 66,
2000, 35, 1095–1115.
471–478.
COPOLY(PERYLENEIMIDE)S SYNTHESIS AND PROPERTIES, RUSU ET AL.
4241