10.1002/ejic.201901075
European Journal of Inorganic Chemistry
FULL PAPER
Scheme 5. Substrate scope for the MH reaction with acrylamide 2e.
Keywords: Mizoroki-Heck • Coupling • Palladate • aryl halide •
acrylate
Conclusions
[1]
a) J.-P. Corbet, G. Mignani, Chem. Rev. 2006, 106, 2651-2710; b) C. C.
C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus,
Angew. Chem. Int. Ed. 2012, 51, 5062-5085; c) New Trends in Cross-
Coupling: Theory and Applications, RSC catalysis series No. 21 (Ed.: T.
J. Colacot), RSC, Cambridge, 2015; d) K. C. Nicolaou, P. G. Bulger, D.
Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4442-4489; e) J. Magano, J. R.
Dunetz, Chem. Rev. 2011, 111, 2177-2250; f) S. Würtz, F. Glorius, Acc.
Chem. Res. 2008, 41, 1523-1533; g) M. S. Viciu, R. A. Kelly, E. D.
Stevens, F. Naud, M. Studer, S. P. Nolan, Org. Lett. 2003, 5, 1479-
1482; h) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116,
12564–12649
In conclusion, the use of an easily accessible SIPr-based
palladate as pre-catalyst in the Mizoroki-Heck coupling reaction
was successfully demonstrated. Palladate pre-catalyst Pd-1
successfully promoted the coupling of aryl halides with acrylate
and methacrylate derivatives as well as acrylamide to afford the
desired coupled products (3, 4 and 5) in moderate to good yields,
in the presence of an inexpensive and mild base (i.e. K2CO3). It
should be noted that, contrarilyy to previous applications
involving palladates, Pd-1 no prior activation under the
described conditions is required. In some cases, the bis-coupled
products 4’ were observed, indicating that at some point an
isomerization of the double bond in 4 occurs; this implies that
three sequential reactions are occurring in the reaction mixture.
Further investigation into this reaction is ongoing in our
laboratories.
[2]
Science of Synthesis: N-Heterocyclic Carbenes in Catalytic Organic
Synthesis, vol 1 & 2 (Eds.: S. P. Nolan, C. S. J. Cazin) Thieme,
Stuttgart, 2016.
[3] a) R. N. Prabhu, R. Ramesh, Tetrahedron Lett. 2012, 53, 5961-5965; b)
E. Peris, R. H. Crabtree, Coord. Chem. Rev. 2004, 248, 2239-2246; c) I.
P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009-3066; d)
C. Frech, Angew. Chem. Int. Ed. 2009, 48, 6947-6947.
[4]
a) Y. Zhang, Z. Lv, H. Zhong, M. Zhang, T. Zhang, W. Zhang, K. Li,
Tetrahedron 2012, 68, 9777-9787; b) Y.-H. Ding, H.-X. Fan, J. Long, Q.
Zhang, Y. Chen, Bioorg. Med. Chem. Lett. 2013, 23, 6087-6092.
J. G. De Vries, Can. J. Chem. 2001, 79, 1086-1092.
T. Sato, T. Takata, Polym. J. 2009, 41, 470.
[5]
[6]
[7]
[8]
Experimental Section
A. B. Dounay, L. E. Overman, Chem. Rev. 2003, 103, 2945-2964.
X. Jiang, G. T. Lee, K. Prasad, O. Repic, Org. Process Res. Dev. 2008,
12, 1137-1141.
General procedure for the Mizoroki-Heck reaction: In air, a vial was
charged with [SIPr·H][Pd(ƞ3-2-Me-allyl)Cl2] (Pd-1) (4.4 mg, 1.4 mol%),
K2CO3 (2.0 equiv.), DMF (1 mL) and
a magnetic stir bar. The
[9]
J. H. Kim, H. Lee, Chem. Mater. 2002, 14, 2270-2275.
corresponding aryl halide (0.5 mmol) was added followed by the
corresponding acrylate (1.0 equiv.), and the vial was then sealed with a
screw cap. The reaction was left to stir for 20 h at 100 °C. Afterwards,
distilled water (2 mL) was added and the products were extracted with
diethyl ether (3x3 mL). Finally, the products were isolated by flash
column chromatography. The isolated yields are average of two runs. All
the related supporting data are given in the Supporting Information.
[10] a) E. A. B. Kantchev, C. J. O'Brien, M. G. Organ, Angew. Chem. Int. Ed.
2007, 46, 2768-2813; b) G. C. Fortman, S. P. Nolan, Chem. Soc. Rev.
2011, 40, 5151-5169; c) S. M. P. Vanden Broeck, F. Nahra, C. S. J.
Cazin, Inorganics 2019, 7, 78.
[11] a) E. Marelli, A. Chartoire, G. Le Duc, S. P. Nolan, ChemCatChem
2015, 7, 4021-4024; b) F. Izquierdo, C. M. Zinser, Y. Minenkov, D. B.
Cordes, A. M. Z. Slawin, L. Cavallo, F. Nahra, C. S. J. Cazin, S.
P. Nolan, ChemCatChem 2018, 10, 601-611; c) F. Izquierdo, A.
Chartoire, S. P. Nolan, ACS Catalysis 2013, 3, 2190-2193; d) E. Marelli,
Y. Renault, S. V. Sharma, S. P. Nolan, R. J. M. Goss, Chem. Eur.
J. 2017, 23, 3832-2836.
Mizoroki-Heck reaction scale up: Following the general procedure,
[SIPr·H][Pd(ƞ3-2-Me-allyl)Cl2] (Pd-1) (44 mg, 1.4 mol%), K2CO3 (1.38 g,
2.0 equiv.), DMF (10 mL) were charged into oven dried 20 ml screwed
cap vial. 4-bromoanisol (0.93 g, 5 mmol) and n-butyl acrylate (0.64 g, 5
mmol) were added subsequently and the vial was closed and heated to
100 oC for 20 h. the reaction residue was purified by column
chromatography 100-200 mesh silica gel and EtOAc/n-hexane (3:97) to
[12] a) K. R. Balinge, P. R. Bhagat, C. R. Chim. 2017, 20, 773-804, and
references cited therein; b) H. Yang, X. Han, G. Li and Y. Wang, Green
Chem. 2009, 11, 1184-1193; c) A.P. Wight, M.E. Davis, Chem. Rev.
2002, 102, 3589-3614; d) J.-Y. Lee, P.-Y. Cheng, Y.-H. Tsai, G.-R. Lin,
S.-P. Liu, M.-H. Sie, H. M. Lee, Organometallics 2010, 29, 3901-3911;
e) T.-T. Gao, A.-P. Jin, L.-X. Shao, Beilstein J. Org. Chem. 2012, 8,
1916–1919; f) N. Sun, M. Chen, L. Jin, W. Zhao, B. Hu, Z. Shen, X. Hu,
Beilstein J. Org. Chem. 2017, 13, 1735-1744.
1
afford 3a in 1.13 g (97%) as a yellow liquid. H NMR (400 MHz, CDCl3):
δ (ppm) = 7.63 (d, J = 16.4 Hz, 1H, CH=CH), 7.47 (d, J = 8.8 Hz, 2HAr),
6.90 (d, J = 8.8 Hz, 2HAr), 6.31 (d, J = 16.4 Hz, 1H, CH=CH), 4.19 (t, J =
7.2 Hz, 2H, OCH2), 3.84 (s, 3H, OCH3), 1.64 – 1.70 (m, 2H, CH2), 1.40 –
1.46 (m, 2H, CH2), 0.96 (t, J = 7.6 Hz, 3H, CH3). 13C {1H} NMR (100 MHz,
CDCl3): δ (ppm) = 167.6 (C=O), 161.4 (OCAr), 144.3 (CH=CH), 129.8
(CAr), 127.3 (CAr), 115.9 (CH=CH), 114.5 (CAr), 64.4 (OCH2), 55.5 (OCH3),
30.9 (CH2), 19.3 (CH2), 13.9 (CH3).
[13] a) C. M. Zinser, F. Nahra, M. Brill, R. E. Meadows, D. B. Cordes, A. M.
Z. Slawin, S. P. Nolan, C. S. J. Cazin, Chem. Commun. 2017, 53,
7990–7993; b) C. M. Zinser, K. G. Warren, R. E. Meadows, F. Nahra, A.
M. Al-Majid, A. Barakat, M. S. Islam, S. P. Nolan, C. S. J. Cazin, Green
Chem. 2018, 20, 3246-3252; c) C. M. Zinser, K. G. Warren, F. Nahra, A.
Al-Majid, A. Barakat, M. S. Islam, S. P. Nolan, C. S. J. Cazin,
Organometallics 2019, ASAP, doi: 10.1021/acs.organomet.9b00326.
[14] a) R. S. Dothager, K. S. Putt, B. J. Allen, B. J. Leslie, V. Nesterenko, P.
J. Hergenrother, J. Am. Chem. Soc. 2005, 127, 8686-8696; b) B. J.
Leslie, C. R. Holaday, T. Nguyen, P. J. Hergenrother, J. Med. Chem.
2010, 53, 3964-3972; c) Y. Qian, H.-J. Zhang, H. Zhang, C. Xu, J. Zhao,
H.-L. Zhu, Biorg. Med. Chem. 2010, 18, 4991-4996.
Acknowledgements
The authors gratefully acknowledge support from the Distinguish
Scientist Fellowship Program (DSFP) at KSU.
This article is protected by copyright. All rights reserved.