Welcome to LookChem.com Sign In|Join Free

CAS

  • or

22946-43-6

Post Buying Request

22946-43-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

22946-43-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 22946-43-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,2,9,4 and 6 respectively; the second part has 2 digits, 4 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 22946-43:
(7*2)+(6*2)+(5*9)+(4*4)+(3*6)+(2*4)+(1*3)=116
116 % 10 = 6
So 22946-43-6 is a valid CAS Registry Number.

22946-43-6Relevant articles and documents

Mizoroki–Heck Cross-Coupling of Acrylate Derivatives with Aryl Halides Catalyzed by Palladate Pre-Catalysts

Islam, Mohammad Shahidul,Nahra, Fady,Tzouras, Nikolaos V.,Barakat, Assem,Cazin, Catherine S. J,Nolan, Steven P.,Al-Majid, Abdullah Mohammed

, p. 4695 - 4699 (2019)

The Mizoroki–Heck (MH) reaction involving aryl halides with various acrylates and acrylamides has been studied using air and moisture-stable imidazolium-based palladate pre-catalysts. These pre-catalysts can be converted into Pd-NHC species (NHC = N-heterocyclic carbene) under catalytic conditions and are capable of facilitating the Mizoroki–Heck reaction of aryl halides with various acrylates. The effects of solvent, catalyst loading, temperature and bases on the reaction outcome have been investigated. Various coupling partners were tolerated under the optimal reaction conditions catalyzed by palladate 1, [SIPr·H][Pd(η3-2-Me-allyl)Cl2]. The efficiency of the optimized synthetic methodology was tested on various aryl halides and substituted acrylates as well as acrylamides. The MH reaction yielded the coupled products in good to excellent isolated yields (up to 98%).

Discovery of a novel inhibitor of nitric oxide production with potential therapeutic effect on acute inflammation

Zhu, Long-Qing,Fan, Xiao-Hong,Li, Jun-Fang,Chen, Jin-Hong,Liang, Yan,Hu, Xiao-Ling,Ma, Shu-Meng,Hao, Xiang-Yong,Shi, Tao,Wang, Zhen

supporting information, (2021/05/26)

Inflammation as a host's excessive immune response to stimulation, is involved in the development of numerous diseases. To discover novel anti-inflammatory agents and based on our previous synthetic work on marine natural product Chrysamide B, it and a series of derivatives were synthesized and evaluated for their anti-inflammatory activity on inhibition of LPS-induced NO production. Then the preliminary structure–activity relationships were conducted. Among them, Chrysamide B is the most potent anti-inflammatory agent with low cytotoxicity and strong inhibition on the production of NO (IC50 = 0.010 μM) and the activity of iNOS (IC50 = 0.082 μM) in LPS-stimulated RAW 264.7 cells. Primary studies suggested that the mechanism of action may be that it interfered the formation of active dimeric iNOS but not affected transcription and translation. Furthermore, its good performance of anti-inflammatory effect on LPS-induced multiple inflammatory cytokines production, carrageenan-induced paw edema, and endotoxin-induced septic mice, was observed. We believe that these findings would provide an idea for the further modification and research of these analogs in the future.

A hydrophilic heterogeneous cobalt catalyst for fluoride-free Hiyama, Suzuki, Heck and Hirao cross-coupling reactions in water

Sobhani, Sara,Hosseini Moghadam, Hadis,Skibsted, J?rgen,Sansano, José Miguel

, p. 1353 - 1365 (2020/03/11)

A hydrophilic heterogeneous cobalt catalyst of chitosan, denoted as mTEG-CS-Co-Schiff-base, has been successfully prepared. This newly synthesized catalyst was characterized by different methods such as XRD, FE-SEM, TEM, TGA, FT-IR, 13C{1H} CP/MAS NMR, XPS and ICP analyses. The catalyst displayed excellent activity for the palladium and fluoride-free Hiyama, Suzuki, Heck and Hirao reactions of various aryl iodides, bromides and chlorides (i.e., the most challenging aryl halides which are cheaper and more widely available than aryl iodides and bromides) in water. The presence of triethylene glycol tags with hydrophilic character on the Co-complex supported on chitosan provides dispersion of the catalyst particles in water, which leads to higher catalytic performance and also facile catalyst recovery by successive extraction. It was reused for at least six successive runs without any discernible decrease in its catalytic activity or any remarkable changes in catalyst structure. The use of water as a green solvent, without requiring any additive or organic solvent, as well as use of a low cost and abundant cobalt catalyst instead of expensive Pd catalysts along with the catalyst recovery and scalability, make this method favorable from environmental and economic points of view for the C-C and C(sp2)-P coupling reactions. Notably, this is the first report on the application of a cobalt catalyst in Hiyama reactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 22946-43-6