D. Stein, A. Dransfeld, M. Flock, H. Rüegger, H. Grützmacher
FULL PAPER
high vacuum to give a yellow powder (1.525 g, 72%). Yellow, very
air-sensitive single crystals of [Li(tmeda)2]+[Li(P3Ph3)(tmeda)]–
were obtained by storing a saturated toluene solution for several
days at 7 °C. [Li(tmeda)2]+[Li(P3Ph3)(tmeda)]– (C36H63Li2N6P3, M
= 686.73 gmol–1): M.p. 166 °C (single crystal, uncorrected). 1H
NMR (300.1 MHz, [D8]toluene, 25 °C): δ = 1.92 [s (br.), 12 H,
CH2(TMEDA)], 2.03 [s (br.), 36 H, CH3(TMEDA)], 6.87 (m, 1 H, p-H
Acknowledgments
This work was supported by Ciba Speciality Chemicals and the
ETH Zürich.
[1] Z.-W. Wang, Li-S. Wang, Green Chem. 2003, 5, 737.
in Ph at PA), 6.89 (m, 2 H, p-H in Ph at PM), 6.97 (m, 2 H, m-H [2] Reviews: a) K. Issleib, Z. Chem. 1962, 2, 163; b) M. Baudler,
K. Glinka, Chem. Rev. 1993, 93, 1623. The formation of cyclic
oligophosphanes is described from PhPCl2/Li in: c) P. R.
Bloomfield, K. Parvin, Chem. Ind. 1959, 541; from PhPCl2/Na:
d) F. Pass, H. Schindlbauer, Monatsh. Chem. 1959, 90, 148; e)
L. Horner, P. Beck, H. Hoffmann, Chem. Ber. 1959, 92, 2088;
f) W. Kuchen, H. Buchwald, Chem. Ber. 1958, 91, 2296; from
PhPCl2/Mg: g) W. A. Henderson, M. Epstein, F. S. Seichter, J.
Am. Chem. Soc. 1963, 85, 2462; h) A. Hinke, W. Kuchen,
Chem. Ber. 1983, 116, 3003; from PhPCl2/Zn: i) M. Scherer, D.
Stein, F. Breher, J. Geier, H. Schönberg, H. Grützmacher, Z.
Anorg. Allg. Chem. 2005, 631, 2770; j) H. Grützmacher, J. Ge-
ier, H. Schönberg, M. Scherer, D. Stein, S. Boulmaâz, WO2004/
050668.
in Ph at PA), 7.20 (m, 4 H, m-H in Ph at PM), 8.04 (m, 4 H, o-H
in Ph at PM), 8.18 ppm (m, 2 H, o-H in Ph at PA). 7Li NMR
(194.4 MHz, [D8]toluene, –73 °C): δ = 11.4 [m (br.)], 10.5 ppm [s
(br.)]. 13C NMR (75.5 MHz, [D8]toluene, 25 °C): δ = 45.9 [s,
CH3(TMEDA)], 57.2 [s, CH2(TMEDA)], 120.0 (s, 4-C in Ph at PM),
124.8 (s, 4-C in Ph at PA), 127.4 (m, 3,5-C in Ph at PA), 128.1 (m,
3,5-C in Ph at PM), 130.0 (m, 2,6-C in Ph at PM), 131.0 (m, 2,6-C
in Ph at PA), 155.8 (m, 1-C in Ph at PM), 159.1 ppm (m, 1-C in Ph
at PA). Multiplets in the 13C NMR spectra represent the X part of
an AMMЈX spin system. 31P NMR (101.3 MHz, [D8]toluene,
25 °C): δ = –52.3 [m, 1JP(M),P(A) = 223.8 Hz, A part of an AM2 spin
1
system, PA], –71.5 ppm [m, JP(M),P(A) = 223.8 Hz, M part of an
[3] [M2(PnPhn)], M = Li–Cs, n = 3, 4: a) P. R. Hoffman, K. G.
Caulton, J. Am. Chem. Soc. 1975, 97, 6370; b) M. Baudler, D.
Koch, Z. Anorg. Allg. Chem. 1976, 425, 227; [M2(P3Ph3)], M =
Na, K: c) M. Baudler, D. Koch, E. Tolls, K. M. Diedrich, B.
Kloth, Z. Anorg. Allg. Chem. 1976, 420, 146; [Na2(P2Ph2)]: d)
J. W. B. Reesor, G. F. Wright, J. Org. Chem. 1957, 22, 385;
[Li2(P2Ph2)] and [K2(P2Ph2)]: e) K. Issleib, K. Krech, Chem.
Ber. 1966, 99, 1310; PhPNa2 has been assumed to be a by-
product in the reaction of (PhP)n with sodium: f) W. Kuchen,
H. Buchwald, Chem. Ber. 1958, 91, 2296; [Na2(tBu3Si–P–P=P–
P–SitBu3)]: g) N. Wiberg, A. Wörner, K. Karaghiosoff, D. Fen-
ske, Chem. Ber./Recueil 1997, 130, 135.
AMMЈ spin system, P(M+MЈ)].
Synthesis of [Li2(P4Ph4)(tmeda)2] (4): [Li2(P3Ph3)(dme)x] (3Ј;
892 mg, 1.466 mmol, 5 equiv., x = 3) and (P5Ph5) (158 mg,
0.242 mmol, 1 equiv.) were suspended in Et2O (30 mL). The yellow
suspension was stirred for 24 h. The almost clear yellow solution
was filtered through a Teflon filter. The solvent was removed under
high vacuum and the obtained orange powder was dissolved in a
mixture of toluene (10 mL) and tmeda (3 mL). The solvent was
removed under high vacuum to give a yellow powder (865 mg,
87%). Slightly yellow, very air-sensitive single crystals of
[Li2(P4Ph4)(tmeda)2] were obtained by storing a saturated mtbe
solution for several days at ambient temperature. [Li2(P4Ph4)-
(tmeda)2] (C36H52Li2N4P4, M = 678.6 gmol–1): M.p. 174 °C (single
[4] R. Wolf, A. Schisler, P. Lönnecke, C. Jones, E. Hey-Hawkins,
Eur. J. Inorg. Chem. 2004, 3277.
[5] a) J. Geier, H. Rüegger, M. Wörle, H. Grützmacher, Angew.
Chem. 2003, 115, 4081; Angew. Chem. Int. Ed. 2003, 42, 3951;
b) J. Geier, J. Harmer, H. Grützmacher, Angew. Chem. 2004,
116, 4185–4189; Angew. Chem. Int. Ed. 2004, 43, 4093–4097c)
D. Stein, J. Geier, H. Schönberg, H. Grützmacher, Chimia
2005, 59, 119.
1
crystals, uncorrected). H NMR (500.2 MHz, [D8]toluene, 25 °C):
δ = 1.76 [s (br.), 8 H, CH2(TMEDA)], 1.95 [s (br.), 24 H,
CH3(TMEDA)], 6.86 (m, 2 H, p-H in Ph at PA), 7.02 (m, 2 H, p-H
in Ph at PB), 7.09 (m, 4 H, m-H in Ph at PA), 7.14 (m, 4 H, m-H
in Ph at PB), 7.72 (m, 4 H, o-H in Ph at PA), 8.22 ppm (m, 4 H, o-
H in Ph at PB). 7Li NMR (194.4 MHz, [D8]toluene, –25 °C): δ =
[6] A. Streitwieser Jr, Acc. Chem. Res. 1984, 17, 353.
[7] N. Korber, J. Aschenbrenner, J. Chem. Soc., Dalton Trans.
2001, 1165.
1
10.9 ppm (t, JLi,P = 37.3 Hz, 2 Li) ppm. 13C NMR (125.8 MHz,
[8] Compare, for example, the molar enthalpy of solution for LiCl
[D8]toluene, 25 °C):
δ
=
46.1 [s, CH3(TMEDA)], 56.8 [s,
(–37.03 kJmol–1) and NaCl (3.88 kJmol–1).
CH2(TMEDA)], 120.6 (s, 4-C in Ph at PA), 125.7 (s, 4-C in Ph at PB),
127.5 (s, 3,5-C in Ph at PA), 127.6 (s, 3,5-C in Ph at PB), 130.2 (m,
2,6-C in Ph at PA), 133.9 (m, 2,6-C in Ph at PB), 148.3 [m (br), 1-
C in Ph at PB], 154.3 ppm [m (br.), 1-C in Ph at PA]. Multiplets in
the 13C NMR spectra represent the X part of an AAЈBBЈX spin
system. 31P NMR (202.5 MHz, [D8]toluene, 25 °C): δ = –2.3 [m,
(PPh)5], –36.8 (br., [Li2(P4Ph4)(tmeda)2]), –53.3 (m, [Li2(P3Ph3)-
(tmeda)3]), –73.0 (m, [Li2(P3Ph3)(tmeda)3]), –76.0 (br., [Li2(P4Ph4)-
(tmeda)2]), –95.4 (br., [Li2(P4Ph4)(tmeda)2]) ppm. 31P NMR
(202.5 MHz, [D8]toluene, –25 °C): δ = –38.0 (m, B part of an
AAЈBBЈX2 spin system, PB [4]), –39.7 (m, B part of an AAЈBBЈX
spin system, PB [4ЈЈ]), –74.4 (m, A part of an AAЈBBЈX spin sys-
tem, PA [4ЈЈ]), –95.1 ppm (m, A part of an AAЈBBЈX2 spin system,
PA [4]); ratio 4/4ЈЈ = 100:81. 31P{1H} CPMAS (202.5 MHz, 25 °C):
δiso = –38, δ11 Ϸ 50, δ22 Ϸ –10, δ33 Ϸ –155 (B part); δiso = –87, δ11
[9] H. Bock, C. Nather, Z. Havlas, A. John, C. Arad, Angew.
Chem. 1994, 106, 931; Angew. Chem. Int. Ed. Engl. 1994, 33,
875.
[10] For the structure of [K(18-C-6)][NHPh] see: P. B. Hitchcock,
A. V. Khvostov, M. F. Lappert, A. V. Protchenko, J. Or-
ganomet. Chem. 2002, 647, 198 and references cited therein.
[11] J. Herzfeld, A. E. Berger, J. Chem. Phys. 1980, 73, 6021.
[12] M. Bak, J. T. Rasmussen, J. C. Nielsen, J. Magn. Reson. 2000,
147, 296.
[13] G. Wu, B. Sun, R. E. Wasylishen, R. G. Griffin, J. Magn. Re-
son. 1997, 124, 366.
[14] M. Kaupp, A. Patrakov, R. Reviakine, O. L. Malkina, Chem.
Eur. J. 2005, 11, 2773.
[15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tom-
asi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratch-
ian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Sal-
vador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
7
Ϸ 0, δ22 Ϸ –55, δ33 Ϸ –205 ppm (A part). Li NMR (194.4 MHz,
1
[D8]toluene, –25 °C): δ = 10.9 ppm (t, JLi,P = 37.3 Hz, 2 Li).
Supporting Information (see footnote on the first page of this arti-
cle): Plots of the 13C NMR spectra of compounds 2, 3, and 4 and
details of the simulation of the 31P CP-MAS spectrum with the
SIMPSON package.
4166
www.eurjic.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2006, 4157–4167