ORGANIC
LETTERS
1999
Vol. 1, No. 2
295-297
Synthesis of
â-Hydroxy-â-(fluoronitrophenyl)alanines:
Vital Components in the Assembly of
Biologically Active Cyclic Peptides
Craig A. Hutton
School of Chemistry, The UniVersity of Sydney, NSW 2006, Australia
Received April 20, 1999
ABSTRACT
Numerous biologically active cyclic peptides, such as the antibiotic vancomycin, contain amino acid residues connected through side-chain
biaryl or aryl−alkyl ether linkages. Nucleophilic aromatic substitution reactions have recently been shown to provide a general method for the
formation of such ether linkages, and consequently the synthesis of functionalized fluoronitro-substituted aromatic amino acids is of great
interest. Herein, a method for the stereospecific synthesis of 3-fluoro-4-nitro- and 4-fluoro-3-nitro-threo-â-hydroxyphenylalanine is described.
Recent advances in nucleophilic aromatic substitution
(SNAr) reactions of fluoronitro-substituted aromatic amino
acids have shown the SNAr methodology to be exceptionally
useful for the synthesis of biologically active cyclic peptides
containing biaryl or alkyl-aryl ether linkages.1-5 In particu-
lar, 4-fluoro-3-nitro-â-hydroxyphenylalanine derivatives have
been used extensively in the synthesis of vancomycin and
its analogues.2 Additionally, SNAr reactions of 3-fluoro-4-
nitrophenylalanine derivatives have been employed in the
synthesis of cyclic peptides such as the cycloisodityrosine-
containing peptides,3 K-13,4 and the cyclopeptide alkaloids.5
(1) (a) Feng, Y.; Wang, Z.; Jin, S.; Burgess, K. J. Am. Chem. Soc. 1998,
120, 10768. (b) Raeppel, S.; Raeppel, F.; Suffert, J. Synlett 1998, 794. (c)
Zhu, J. Synlett 1997, 133.
Several syntheses of 4-fluoro-3-nitro-â-hydroxyphenyl-
alanine derivatives have been reported, all of which proceed
via aldol-type reactions of glycine anion equivalents with
4-fluoro-3-nitrobenzaldehyde, utilizing either Evans2a,6 or
Schollkopf3b chiral auxiliaries or enzyme-mediated reactions.7
Although synthesis of the (2S,3S)-isomer (erythro-isomer)
of 4-fluoro-3-nitro-â-hydroxyphenylalanine using Evans’
imide enolate methodology occurs with high diastereoselec-
tivity and in high yield,6a synthesis of the (2S,3R)-isomer
(2) (a) Evans, D. A.; Wood, M. R.; Trotter, B. W.; Richardson, T. I.;
Barrow, J. C.; Katz, J. L. Angew. Chem., Int. Ed. Engl. 1998, 37, 2700. (b)
Boger, D. L.; Beresis, R. T.; Loiseleur, O.; Wu, J. H.; Castle, S. L. Bioorg.
Med. Chem. Lett. 1998, 8, 721. (c) Rama Rao, A. V. Pure Appl. Chem.
1998, 70, 391. (d) Boger, D. L.; Borzilleri, R. M.; Nukui, S.; Beresis, R. T.
J. Org. Chem. 1997, 62, 4721. (e) Rama Rao, A. V.; Gurjar, M. K.;
Lakshmipathi, P.; Reddy, M. M.; Nagarajan, M.; Pal, S.; Sarma, B. V. N.
B. S.; Tripathy, N. K. Tetrahedron Lett. 1997, 38, 7433. (f) Beugelmans,
R.; Singh, G. P.; Bois-Choussy, M.; Chastanet, J.; Zhu, J. J. Org. Chem.
1994, 59, 5535.
(3) (a) Bigot, A.; Beugelmans, R.; Zhu, J. Tetrahedron 1997, 53, 10753.
(b) Boger, D. L.; Zhou, J.; Borzilleri, R. M.; Nukui, S.; Castle, S. L. J.
Org. Chem. 1997, 62, 2054. (c) Boger, D. L.; Borzilleri, R. M. Bioorg.
Med. Chem. Lett. 1995, 5, 1187.
(6) (a) Evans, D. A.; Watson, P. S. Tetrahedron Lett. 1996, 37, 3251.
(b) Zhu, J.; Boullion, J.-P.; Singh, G. P.; Chastanet, J.; Beugelmans, R.
Tetrahedron Lett. 1995, 39, 7081.
(7) Kimura, T. K.; Vassilev, V. P.; Shen, G.-J.; Wong, C.-H. J. Am.
Chem. Soc. 1997, 119, 11734.
(4) Beugelmans, R.; Bigot, A.; Zhu, J. Tetrahedron Lett. 1994, 35, 7741.
(5) (a) East, S. P.; Shao, F.; Williams, L.; Joullie, M. M. Tetrahedron
1998, 54, 13371. (b) Laib, T.; Zhu, J. Tetrahedron Lett. 1998, 39, 283.
10.1021/ol9906054 CCC: $18.00 © 1999 American Chemical Society
Published on Web 05/27/1999