10.1002/anie.201712395
Angewandte Chemie International Edition
COMMUNICATION
Scheme 2. Product transformations.
We carried out control experiments to understand the reaction
mechanism. The background reaction of 1d and 2d did not
proceed in the absence of catalyst (Eq. 1). In contrast, an
aqueous-organic biphasic system smoothly promoted the
background reaction. The results indicate the standard liquid-
solid biphasic system is effective and critically important for
clean ion exchange to ensure exclusive enantiocontrol via the
chiral ion pair intermediate. Mixing iodide 7d with silver
phosphate salt Ag-A1 provided chiral azetidinium phosphate salt
IP-A1.[13] Treating this salt with nucleophile 2d in PhCF3 directly
led to the formation of the ring-opening product (83% yield, 42%
ee, Eq. 2). For direct comparison, the standard protocol from
azetidinium 1d with catalyst A1 provided essentially the same
level of enantiocontrol. These results agree well with the
mechanistic proposal involving chiral ion pair.
In conclusion, we have developed the first catalytic
enantioselective desymmetrization of azetidiniums. The reaction
provides rapid access to a wide range of β-chiral amine
derivatives with high enantioselectivity under mild conditions.
These highly enantioenriched and densely functionalized
products can be easily transformed to other useful chiral building
blocks. Mechanistically, a suitable chiral anion phase transfer
(CAPT) catalytic system is critically important for precise control
over each stage of the process. It also represents a rare
example of excellent asymmetric induction by chiral counter
anions on tetrahedral cations.
Keywords: asymmetric catalysis • phase-transfer catalysis •
small ring systems • chirality • organocatalysis
[1]
a) T. Hashimoto, K. Maruoka, Chem. Rev. 2007, 107, 5656-5682; b) S.
Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52, 4312-4348;
Angew. Chem. 2013, 125, 4408-4445; For selected examples, see: c) T.
Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 1999, 121, 6519-
6520; d) Y. Wu, L. Hu, Z. Li, L. Deng, Nature 2015, 523, 445-450.
P. T. Nyffeler, S. G. Durón, M. D. Burkart, S. P. Vincent, C.-H. Wong,
Angew. Chem. Int. Ed. 2005, 44, 192-212; Angew. Chem. 2005, 117,
196-217.
[2]
[3]
[4]
[5]
a) G. L. Hamilton, T. Kanai, F. D. Toste, J. Am. Chem. Soc. 2008, 130,
14984-14986; b) T. H. West, D. S. B. Daniels, A. M. Z. Slawin, A. D.
Smith, J. Am. Chem. Soc. 2014, 136, 4476-4479.
a) F. Couty, G. Evano, Synlett 2009, 19, 3053-3064; b) T. M. Bott, F. J.
West, Heterocycles 2012, 84, 223-264; c) F. Couty, B. Drouillat, G.
Evano, O. David, Eur. J. Org. Chem. 2013, 2045-2056.
Furthermore, the cis and trans isomers of 1r were separately
subjected to the reaction conditions. Interestingly, both led to 3r
favoring the same (R)-enantiomer, but the cis isomer reacted
with higher enantioselectivity and much faster rate (Eq. 3).[14a] To
explain this stereoconvergence, we proposed a transition state
model, in which the ammonium motif provides ion-pairing
interaction. The azetidinium ring is oriented with the larger
substituent (RL) pointing against the catalyst pocket to minimize
steric clash. An additional hydrogen bond between the
nucleophile and the phosphoryl oxygen increases its
nucleophilicity and also helps achieve a pseudo bifunctional
scenario.[14b] The nucleophile then approaches the back side, as
the front side is blocked by the catalyst substituent. Thus, the
product stereochemical outcome has little dependence on the
relative cis/trans configuration of substrates or the size
difference between the two substituents on the nitrogen, which is
consistent with the experimental results (e.g., 3aa). The higher
reactivity of the cis isomer could be explained by the higher
energy (vs. trans isomer) due to steric repulsion between the
two large groups on the same face of the four-membered ring. It
may also benefit from a better fit into the tight transition state.
The lower enantioselectivity observed with the slower trans
isomer might also be partly due to the relatively faster
background reaction.
a) G. Kalaus, N. Malkieh, I. Katana, M. Kajtꢀr-Peredy, T. Koritsꢀnszky,
A. KꢀlmAn, L. Szabꢁ, C. Szꢀntay, J. Org. Chem. 1985, 50, 3760-3767;
b) F. Couty, F. Durrat, G.; Evano, D. Prim, Tetrahedron Lett. 2004, 43,
7525-7528; c) F. Couty, O. David, F. Durrat, G. Evano, S. Lakhdar, J.;
Marrot, M. Vargas-Sanchez, Eur. J. Org. Chem. 2006, 3479-3490; d)
D.-H. Leng, D.-X. Wang, J. Pan, Z.-T. Huang, M.-X. Wang, J. Org.
Chem. 2009, 74, 6077-6082; e) M. Buchman, K. Csatayovꢀ, S. G.
Davies, A. M. Fletcher, I. T. T. Houlsby, P. M. Roberts, S. M. Rowe, J.
E. Thomson, J. Org. Chem. 2016, 81, 4907-4922.
[6]
[7]
a) Chiral Amine Synthesis, (Eds.: T. C. Nugent), Wiley-VCH, Weinheim,
2010; For selected examples, see: b) T. Huang, J. Sun, L. An, L. Zhang,
C. Han, Bioorg. Med. Chem. Lett. 2016, 26, 1854-1859; c) M.
Nettekoven, J.-M. Plancher, H. Richter, O. Roche, S. Taylor, PCT Int.
Appl. WO US 2007/0135416 A1, 2007; d) H. Shibata, K. Yonezawa, Y.
Mori, K. Shimizu, JP09235278A, Japan, 1997; e) P. R. Blakemore, J.
Chem. Soc. Perkin Trans.1 2002, 2563–2585.
For selected recent reports, see: a) Z. Lu, A. Wilsily, G. C. Fu, J. Am.
Chem. Soc. 2011, 133, 8154-8157; b) Y. Takeda, Y. Ikeda, A. Kuroda,
S. Tanaka, S. Minakata, J. Am. Chem. Soc. 2014, 136, 8544-8547; c) S.
Zhu, S. L. Buchwald, J. Am. Chem. Soc. 2014, 136, 15913-15916; d) B.
P. Woods, M. Orlandi, C.-Y. Huang, M. S. Sigman, A. G. Doyle, J. Am.
Chem. Soc. 2017, 139, 5688-5691; e) D. Wang, F. Wang, P. Chen, Z.
Lin, G. Liu, Angew. Chem. Int. Ed. 2017, 56, 2054-2058; Angew. Chem.
2017, 129, 2086-2090; f) D. Wang, L. Wu, F. Wang, X. Wan, P. Chen,
Z. Lin, G. Liu, J. Am. Chem. Soc. 2017, 139, 6811-6814.
This article is protected by copyright. All rights reserved.