C O M M U N I C A T I O N S
Table 2. Solvent Effect for Asymmetric Diels-Alder Reaction
catalyst. Further applications of N-triflyl phosphoramide to other
organic reactions are underway in our laboratory.
Acknowledgment. Financial support for this project has been
provided by SORST, Japan Science and Technology (JST), and
The University of Chicago.
yield
entry
solvent
(%)
A:Bb
ee (%)a
Supporting Information Available: Experimental procedure and
spectroscopic data of new compounds. This material is available free
1
2
3
toluene
95
83
95
76:24
78:22
71:29
92
93
93
ethylbenzene
chlorobenzene:
toluene ) 1:2
CH2Cl2
References
4
5
55
99
n.d.
85:15
81
80
hexane
(1) For reviews, see: (a) Schreiner, P. R. Chem. Soc. ReV. 2003, 32, 289. (b)
Seayad, J.; List, B. Org. Biomol. Chem. 2003, 3, 719. (c) Pihko, P. M.;
Angew. Chem., Int. Ed. 2004, 43, 2062. (d) Taylor, M. S.; Jacobsen, E.
N. Angew. Chem., Int. Ed. 2006, 45, 1520.
a Enantiomeric excess was determined by GC analysis after cleavage of
1
the TIPS group. b Ratio of A:B was determined by H NMR.
(2) (a) Burk, P.; Koppel, I. A.; Koppel, I.; Yagupolskii, L. M.; Taft, R. W. J.
Comput. Chem. 1996, 17, 30. (b) Leito, I.; Kaljurand, I.; Koppel, I. A.;
Yagupolskii, L. M.; Vlasov, V. M. J. Org. Chem. 1998, 63, 7868. (c)
Koppel, I. A.; Koppel, J.; Leito, I.; Koppel, I.; Mishima, M.; Yagupolskii,
L. M. J. Chem. Soc., Perkin Trans. 2 2001, 229. (d) Yagupolskii, L. M.;
Petrik, V. N.; Kondratenko, N. V.; Soova¨li, L.; Kaljurand, I.; Leito, I.;
Koppel, I. A. J. Chem. Soc., Perkin Trans. 2 2002, 1950.
Table 3. Substrate Scopea
(3) Chiral phosphoric acid: (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe,
K. Angew. Chem., Int. Ed. 2004, 43, 1566. (b) Uraguchi, D.; Terada, M.
J. Am. Chem. Soc. 2004, 126, 5356. (c) Uraguchi, D.; Sorimachi, K.;
Terada, M. J. Am. Chem. Soc. 2004, 126, 11804. (d) Uraguchi, D.;
Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005, 127, 9360. (e)
Akiyama, T.; Saitoh, Y.; Morita, H.; Fuchibe, K. AdV. Synth. Catal. 2005,
347, 1523. (f) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett.
2005, 7, 2583. (g) Rowland, G. B.; Zhang, H.; Rowland, E. B.;
Chennamadhavuni, S.; Wang, Y.; Antilla, J. J. Am. Chem. Soc. 2005,
127, 15696. (h) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.;
Bolte, M. Org. Lett. 2005, 7, 3781. (i) Hoffman, S.; Seayad, A. M.; List,
B. Angew. Chem., Int. Ed. 2005, 44, 7424. (j) Terada, M.; Sorimachi, K.;
Uraguchi, D. Synlett 2006, 133. (k) Akiyama, T.; Tamura, Y.; Itoh, J.;
Morita, H.; Fuchibe, K. Synlett 2006, 141. (l) Storer, R. I.; Carrera, D.
E.; Ni, Y.; Macmillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84. (m)
Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086.
(n) Rueping, M.; Sugiono, E.; Azap, C. Angew. Chem., Int. Ed. 2006, 45,
2617. (o) Terada, M.; Machida, K.; Sorimachi, K. Angew. Chem., Int.
Ed. 2006, 45, 2254.
entry
R3Sib
R1
yield (%)
ee (%)c
1
TBS
Me
Me
H
43
95e
92
92
88
85
92
87
82
91
2d
3f
4
TIPS
TIPS
TIPS
TIPS
TIPS
TIPS
TIPS
43g
Bn
>99
>99
>99
35
5
6
7
8
(4-TBSOC6H4)CH2
(4-MOMOC6H4)CH2
(4-HOC6H4)CH2
BzOCH2CH2
>99
a (Z,E)-Silyloxydiene is major. b TBS ) tert-butyldimethylsilyl, TIPS )
triisopropylsilyl. c Enantiomeric excess was determined by GC analysis after
cleavage of silicon or by HPLC analysis directly (see Supporting Informa-
tion). d Reaction time was 3 h. e 76:24 mixture of olefin regio isomer. f 3
(15 mol %) and ethyl vinyl ketone (3 equiv) were used. g Yield was
determined after the cleavage of the TIPS group because the compound is
almost a 1:1 mixture of olefin regio isomer.
(4) The second and third pKa values of N-triflyl phosphoramide ((HO)2P(O)-
NHTf) are about 4 and 5 pKa units lower than that of H3PO4 (7.21 and
12.31, respectively): Burlingham, B. T.; Widlanski, T. S. J. Org. Chem.
2001, 66, 7561.
(5) Asymmetric Diels-Alder reaction of ketone: (a) Ryu, D. H.; Lee, T.
W.; Corey, E. J. J. Am. Chem. Soc. 2002, 124, 9992. (b) Ryu, D. H.;
Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388. (c) Hawkins, J. M.;
Nambu, M.; Loren, S. Org. Lett. 2003, 5, 4293. (d) Hu, Q.-Y.; Zhou, G.;
Corey, E. J. J. Am. Chem. Soc. 2004, 126, 13708. (e) Ryu, D. H.; Zhou,
G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 4800. (f) Futatsugi, K.;
Yamamoto, H. Angew. Chem., Int. Ed. 2005, 44, 1484. (g) Singh, R. S.;
Harada, T. Eur. J. Org. Chem. 2005, 3433.
the nonpolar solvent, such as hexane, the reaction still proceeded
cleanly, but the enantiomeric excess was slightly decreased (entry
5 in Table 2).
The substrate scope of the asymmetric Diels-Alder reactions
between ethyl vinyl ketone and silyloxydienes is summarized in
Table 3. The bulkiness of the silyl group did not affect the
enantioselectivity. The yields of reactions are, however, quite
sensitive to the stability of silyloxydienes due to the protonation
of diene and deactivation (silylation) of catalyst (entries 1 and 2 in
Table 3).12 For the same reason, R-nonsubstituent silyloxydiene gave
relatively low yield but still maintained the high enantiomeric excess
value (entry 3 in Table 3). Interestingly, the olefin migration was
not observed under the reaction conditions when tert-butyldimeth-
ylsilyloxydiene was used or when R1 was a sterically hindered
group, such as a benzyl (entries 1 and 4-8 in Table 3). The acid-
sensitive groups, such as a silyl ether and methoxymethyl ether,
are tolerant in this reaction (entries 5 and 6 in Table 3). Usually,
the free hydroxyl group is not compatible with the chiral metal
Lewis acid catalyst; however, it is noteworthy that the reaction
tolerates this group with chiral Brønsted acid catalyst (entry 7 in
Table 3). The Lewis basic functional group, ester moiety, did not
affect either the reactivity or the enantioselectivity (entry 8 in Table
3).
(6) Another approach for the asymmetric Diels-Alder reaction of ketone:
Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124,
2458.
(7) Nakashima, D.; Yamamoto, H. Org. Lett. 2005, 7, 1251.
(8) Asymmetric Diels-Alder reaction catalyzed by chiral Brønsted acid: (a)
Schuster, T.; Bauch, M.; Du¨lrner, G.; Go¨bel, M. W. Org. Lett. 2000, 2,
179. (b) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature
2003, 424, 146. (c) Thadani, A. N.; Stankovic, A. R.; Rawal, V. H. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5846. (d) Du, H.; Zhao, D.; Ding, K.
Chem.sEur. J. 2004, 10, 5964. (e) Tonoi, T.; Mikami, K. Tetrahedron
Lett. 2005, 46, 6355. (f) Zhuang, W.; Poulsen, T. B.; Jørgensen, K. A.
Org. Biomol. Chem. 2005, 3, 3284. (g) Unni, A. K.; Takenaka, N.;
Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 1336. (h)
Rajaram, S.; Sigman, M. S. Org. Lett. 2005, 7, 5473. (i) Zhang, X.; Du,
H.; Wang, Z.; Wu, Y.-D.; Ding, K. J. Org. Chem. 2006, 71, 2862.
(9) When methyl vinyl ketone was used instead of ethyl vinyl ketone,
enantioselectivity decreased to 48% ee.
(10) When TIPS enol ether of acetophenone and 3 were mixed in CD2Cl2,
both the peak shift of 3 and the generation of acetophenone were observed
by 1H NMR.
(11) Our contribution to the silyl cation chemistry: (a) Ishihara, K.; Hiraiwa,
Y.; Yamamoto, H. Synlett 2001, 1851. (b) Ishihara, K.; Hiraiwa, Y.;
Yamamoto, H. Chem. Commun. 2002, 1564. (c) Hasegawa, A.; Ishihara,
K.; Yamamoto, H. Angew. Chem., Int. Ed. 2003, 42, 5731. (d) Boxer, M.
B.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 48.
In conclusion, we have developed a highly reactive and acidic
chiral Brønsted acid catalyst, chiral N-triflyl phosphoramide. Highly
enantioselective Diels-Alder reaction of R,â-unsaturated ketone
with silyloxydiene was demonstrated using this chiral Brønsted acid
(12) TBS enol ether is more reactive than TIPS enol ether: Mayr, H.; Kempf,
B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.
JA062508T
9
J. AM. CHEM. SOC. VOL. 128, NO. 30, 2006 9627