C O M M U N I C A T I O N S
Scheme 2 a
a Key: (a) TMSCl, imidazole, CH2Cl2, 96%; (b) Pd2dba3 (0.1 equiv), LiCl, i-Pr2NEt, NMP, 40 °C, 80 min, 85%; (c) LDA, t-BuOAc, Et2O, -78 °C f
rt, 81%; (d) TBAF (2 equiv), THF, -40 f 0 °C, 86%; (e) MeOCOCl, pyridine, CH2Cl2, 93%; (f) TMSCl, imidazole, CH2Cl2, 95%; (g) Pd2dba3 (0.1 equiv),
THF, 40 °C, 12 h, 80%; (h) KHMDS, PhSeBr, THF, -10 °C, 91%; (i) mCPBA, CH2Cl2, -78 °C; then CHCl3, 40 °C, 4 h, 40%; (j) PPTS, MeOH; (k)
TFA/CH2Cl2 (1:9), 0 °C f rt; (l) EDC, DMAP, CH2Cl2, 62% from 11.
enantiomer of naturally occurring FR182877.18 This finding is of
much interest from a biosynthetic perspective because it suggests
Reminiscences and Afterthoughts. In The Biosynthesis of the Tetrapyrrole
Pigments; Ciba Foundation Symposium 180, Wiley: Chichester, 1994; p
309. (j) Heathcock, C. H. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14323.
(2) (a) (-)-Hispidospermidin: Tamiya, J.; Sorensen, E. J. J. Am. Chem. Soc.
2000, 122, 9556. (b) FR901483: Scheffler, G.; Seike, H.; Sorensen, E. J.
Angew. Chem., Int. Ed. 2000, 39, 4593.
(3) (a) Sato, B.; Muramatsu, H.; Miyauchi, M.; Hori, Y.; Takase, S.; Hino,
M.; Hashimoto, S.; Terano, H. J. Antibiot. 2000, 53, 123. (b) Sato, B.;
Nakajima, H.; Hori, Y.; Hino, M.; Hashimoto, S.; Terano, H. J. Antibiot.
2000, 53, 204. (c) Yoshimura, S.; Sato, B.; Kinoshita, T.; Takase, S.;
Terano, H. J. Antibiot. 2000, 53, 615.
(4) (a) Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem., Int. Ed. Engl.
1994, 33, 15. (b) Kingston, D. G. I. Chem. Commun. 2001, 867.
(5) Ho¨fs, R.; Walker, M.; Zeeck, A. Angew. Chem., Int. Ed. 2000, 39, 3258.
(6) Vanderwal, C. D.; Vosburg, D. A.; Sorensen, E. J. Org. Lett. 2001, 3,
4307.
(7) Vanderwal, C. D.; Vosburg, D. A.; Weiler, S.; Sorensen, E. J. Org. Lett.
1999, 1, 645.
that FR182877 and hexacyclinic acid are closely related with respect
to constitution and absolute stereochemistry.5,6
The asymmetric synthesis of (+)-FR182877 described herein
issued from the following question: Can the unique architecture
of 1 arise spontaneously from a polyunsaturated precursor by a
cascade of cyclizations? In our effort to address this question
experimentally, we found that two π-allyl Pd(II)-mediated bond
forming reactions facilitated a synthesis of a polyunsaturated
macrocycle that can indeed undergo a remarkable sequence of
complexity-generating reactions with minimal instigation. The
diastereoselectivity observed for this polycyclization process is
apparently intrinsic to structures of type 3 and does not result from
the influence of an external asymmetric catalyst. This synthesis of
FR182877 validates our biogenetic proposal and provides a
chemical rationalization of its structure.
(8) The transformations shown in Scheme 1 are generalized and are not meant
to preclude other possible orderings of events.
(9) Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1.
(10) (a) For an example of a palladium-mediated macrocyclization, see: Trost,
B. M.; Brickner, S. J. J. Am. Chem. Soc. 1983, 105, 568. (b) For a review,
see: Trost, B. M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1173.
(11) (a) Tsuji, J.; Shimizu, I.; Minami, I.; Ohashi, Y. Tetrahedron Lett. 1982,
23, 4809. (b) For a review, see: Tsuji, J. Tetrahedron 1986, 42, 4361.
(12) (a) Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977, 4171.
(b) Levin, J. I.; Turos, E.; Weinreb, S. M. Synth. Commun. 1982, 12,
989.
(13) Turner, J. A.; Jacks, W. S. J. Org. Chem. 1989, 54, 4229.
(14) (a) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697. (b)
Reich, H. J.; Reich, I. L.; Renga, J. M. J. Am. Chem. Soc. 1973, 95, 5813.
(c) Nicolaou, K. C.; Petasis, N. A. Selenium in Natural Products Synthesis;
CIS, Inc.: Philadelphia, 1984. The oxidative deselenylation gives a ca.
1:1 E/Z ratio of inseparable pentaenes of type 3, isomeric at the newly
formed C1-C19 olefin. Studies to form this olefin with greater E-
selectivity are in progress.
(15) Pentacycle 11 constitutes g50% of the product mass balance and represents
ca. 80% yield based on the unisolable E-pentaene. The minor reaction
products include a diastereomer of 11 and two diastereomeric derivatives
of 4. At room temperature the tandem cycloadditions require ca. 24 h.
Further studies of this process will be reported in due course.
(16) (a) For an excellent review by the pioneer in the development of the
transannular Diels-Alder strategy in organic synthesis, see: Marsault,
E.; Toro´, A.; Nowak, P.; Deslongchamps, P. Tetrahedron 2001, 57, 4243.
(b) For a recent and elegant biomimetic natural product synthesis featuring
intermolecular and transannular Diels-Alder reactions, see: Layton, M.
E.; Morales, C. A.; Shair, M. D. J. Am. Chem. Soc. 2002, 124, 773.
(17) The longest linear sequence of 20 steps proceeds in 5% overall yield (86%
yield/step) from (E)-4-tert-butyldimethylsilyloxy-but-2-enal (see ref 6).
(18) Our finding is corroborated in a recent revision of the absolute stereo-
chemistry of FR182877 by Fujisawa scientists (see: J. Antibiot. 2002,
55, C1). We thank Dr. Seiji Yoshimura from Fujisawa Pharmaceutical
Co. for providing us with this information.
Acknowledgment. This paper is dedicated with respect and
affection to Professor Roger C. Hahn on the occasion of his 70th
birthday. Our work was supported by The Skaggs Institute for
Chemical Biology at TSRI, NIH/NCI Grant CA85526, the Beckman
Foundation, a Camille-Dreyfus Teacher-Scholar Award, Astra-
Zeneca, Eli Lilly, Merck, and predoctoral fellowships from the
NSERC of Canada (C.D.V.), Hoffmann-La Roche (C.D.V.), the
Skaggs Institute (C.D.V.), NSF (D.A.V.), and ACS/AstraZeneca
(D.A.V.). We thank Dr. Sven Weiler (now at Novartis) for early
contributions to this project.
Supporting Information Available: Characterization data for 8,
10, 11, and 1 (PDF). This material is available free of charge via the
References
(1) For selected discussions and reviews, see: (a) van Tamelen, E. E. Fortschr.
Chem. Org. Naturst. 1961, 19, 242. (b) Woodward, R. B. Nature 1948,
162, 155. (c) Robinson, R. The Structural Relations of Natural Products;
Clarendon Press: Oxford, 1955. (d) Barton, D. H. R.; Cohen, T. Festschrift
Arthur Stoll 1957, 117. (e) Woodward, R. B. Pure Appl. Chem. 1961, 2,
383. (f) van Tamelen, E. E. Acc. Chem. Res. 1975, 8, 152. (g) Johnson,
W. S. Angew. Chem., Int. Ed. Engl. 1976, 15, 9. (h) Eschenmoser, A.
Angew. Chem., Int. Ed. Engl. 1988, 27, 5. (i) Eschenmoser, A. B12
:
JA025885O
9
J. AM. CHEM. SOC. VOL. 124, NO. 17, 2002 4553