Journal of the American Chemical Society
Article
and reverse rate constants. Reversible bimolecular reactions simplify to
this form when the concentration of one of the components is
sufficiently large, which applies in this case due to the presumed excess
of substrate relative to enzyme.
(15) It is important to note that not all binding events that proceed
via conformational selection show ligand inhibition; when the rapid
equilibrium approximation does not hold, approximately first order or
saturation behavior can be observed. However, if ligand inhibition is
observed, the induced fit mechanism can be definitively ruled out in
favor of conformational selection. Finally, it is important to note that
many biological systems follow a much more complicated mechanism
that may incorporate elements of both conformational selection and
induced fit.
between synthetic and biological supramolecular systems. In
particular, this work highlights the useful role of synthetic
supramolecular analogs to biological systems and their
application as model systems for biology.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details, synthetic procedures, kinetic rate
constant derivations, NMR and HRMS data, and other
(16) Pozzi, N.; Vogt, A. D.; Gohara, D. W.; Di Cera, E. Curr. Opin.
Struct. Biol. 2012, 22 (4), 421.
(17) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int.
Ed. 2009, 48 (19), 3418.
(18) Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N.
Chem. Rev. 2015, 115 (9), 3012.
(19) Catti, L.; Zhang, Q.; Tiefenbacher, K. Synthesis 2016, 48 (3),
313.
AUTHOR INFORMATION
■
Corresponding Authors
(20) Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int.
Ed. 2011, 50 (1), 114.
(21) Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W.
N. M. Chem. Soc. Rev. 2014, 43 (5), 1734.
(22) Caulder, D. L.; Powers, R. E.; Parac, T. N.; Raymond, K. N.
ORCID
Author Contributions
†C.M.H. and D.M.K. contributed equally.
Angew. Chem., Int. Ed. 1998, 37 (13−14), 1840.
(23) Brumaghim, J. L.; Michels, M.; Raymond, K. N. Eur. J. Org.
Chem. 2004, 2004 (22), 4552.
Notes
The authors declare no competing financial interest.
(24) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc.
2007, 129 (37), 11459.
(25) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science 2007, 316
ACKNOWLEDGMENTS
■
This research was supported by the Director, Office of Science,
Office of Basic Energy Sciences, and the Division of Chemical
Sciences, Geosciences, and Bioscience of the U.S. Department
of Energy at Lawrence Berkeley National Laboratory (Grant
No. DE-AC02-05CH11231). D.M.K. was supported by an NSF
GRFP (Grant No. DGE 1106400). We gratefully thank Dr. Rita
V. Nichiporuk for her expertise and guidance in electrospray
mass spectrometry of metal−ligand complexes, and we
especially thank Professor Alex Bain for fruitful discussions
regarding the use of selective inversion recovery (SIR) NMR in
systems of three-fold self-exchange.
(5821), 85.
(26) Hart-Cooper, W. M.; Clary, K. N.; Toste, F. D.; Bergman, R. G.;
Raymond, K. N. J. Am. Chem. Soc. 2012, 134 (43), 17873.
(27) Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond, K. N.;
Toste, F. D. Science 2015, 350 (6265), 1235.
(28) Hastings, C. J.; Backlund, M. P.; Bergman, R. G.; Raymond, K.
N. Angew. Chem. 2011, 123 (45), 10758.
(29) Zhao, C.; Toste, F. D.; Raymond, K. N.; Bergman, R. G. J. Am.
Chem. Soc. 2014, 136 (41), 14409.
(30) Kaphan, D. M.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. J.
Am. Chem. Soc. 2015, 137 (29), 9202.
(31) Hart-Cooper, W. M.; Sgarlata, C.; Perrin, C. L.; Toste, F. D.;
Bergman, R. G.; Raymond, K. N. Proc. Natl. Acad. Sci. U. S. A. 2015,
112 (50), 15303.
(32) Zhao, C.; Sun, Q.-F.; Hart-Cooper, W. M.; DiPasquale, A. G.;
Toste, F. D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2013,
135 (50), 18802.
(33) Hart-Cooper, W. M.; Zhao, C.; Triano, R. M.; Yaghoubi, P.;
Ozores, H. L.; Burford, K. N.; Toste, F. D.; Bergman, R. G.; Raymond,
K. N. Chem. Sci. 2015, 6 (2), 1383.
REFERENCES
■
(1) Changeux, J.-P.; Edelstein, S. F1000 Biol. Rep. 2011,
(2) Fischer, E. Ber. Dtsch. Chem. Ges. 1894, 27 (3), 2985.
(3) Koshland, D. E. Proc. Natl. Acad. Sci. U. S. A. 1958, 44 (2), 98.
(4) Monod, J.; Wyman, J.; Changeux, J.-P. J. Mol. Biol. 1965, 12 (1),
88.
(5) Tummino, P. J.; Copeland, R. A. Biochemistry 2008, 47 (20),
5481.
(6) Antikainen, N. M.; Smiley, R. D.; Benkovic, S. J.; Hammes, G. G.
Biochemistry 2005, 44 (51), 16835.
(7) Ha, T.; Ting, A. Y.; Liang, J.; Caldwell, W. B.; Deniz, A. A.;
Chemla, D. S.; Schultz, P. G.; Weiss, S. Proc. Natl. Acad. Sci. U. S. A.
1999, 96 (3), 893.
(8) Eisenmesser, E. Z.; Bosco, D. A.; Akke, M.; Kern, D. Science 2002,
295 (5559), 1520.
(34) Scherer, M.; Caulder, D. L.; Johnson, D. W.; Raymond, K. N.
Angew. Chem., Int. Ed. 1999, 38 (11), 1587.
(35) Yeh, R. M.; Xu, J.; Seeber, G.; Raymond, K. N. Inorg. Chem.
2005, 44 (18), 6228.
(36) Pluth, M. D.; Johnson, D. W.; Szigethy, G.; Davis, A. V.; Teat, S.
J.; Oliver, A. G.; Bergman, R. G.; Raymond, K. N. Inorg. Chem. 2009,
48 (1), 111.
(37) Andersen, U. N.; Seeber, G.; Fiedler, D.; Raymond, K. N.; Lin,
D.; Harris, D. J. Am. Soc. Mass Spectrom. 2006, 17 (3), 292.
(38) Black, S. P.; Wood, D. M.; Schwarz, F. B.; Ronson, T. K.;
Holstein, J. J.; Stefankiewicz, A. R.; Schalley, C. A.; Sanders, J. K. M.;
Nitschke, J. R. Chem. Sci. 2016, 7 (4), 2614.
(39) Meng, W.; Clegg, J. K.; Thoburn, J. D.; Nitschke, J. R. J. Am.
Chem. Soc. 2011, 133 (34), 13652.
(40) Saalfrank, R. W.; Demleitner, B.; Glaser, H.; Maid, H.; Bathelt,
D.; Hampel, F.; Bauer, W.; Teichert, M. Chem. - Eur. J. 2002, 8 (12),
2679.
(9) Boehr, D. D.; Nussinov, R.; Wright, P. E. Nat. Chem. Biol. 2009, 5
(11), 789.
(10) Vogt, A. D.; Di Cera, E. Biochemistry 2013, 52 (34), 5723.
(11) Vogt, A. D.; Di Cera, E. Biochemistry 2012, 51 (30), 5894.
(12) Halford, S. E. Biochem. J. 1971, 125 (1), 319.
(13) Fersht, A. Structure and Mechanism in Protein Science: A Guide to
Enzyme Catalysis and Protein Folding; Macmillan, 1999.
(14) For a simple reversible reaction, the first-order rate constant that
describes approach to equilibrium is equal to the sum of the forward
8020
J. Am. Chem. Soc. 2017, 139, 8013−8021