Chin. J. Chem.
Template
Reports
gem-difluoroalkene and monofluoroalkene targets for research in
Watanabe, Y.; Hosoya, T. J. Am. Chem. Soc. 2015, 137, 14313; (o)
Guo, W.; Min, Q.; Gu, J.; Zhang, X. Angew. Chem. Int. Ed.2015,54,
9075; (p) Tian, Y.-M.; Guo X.-N; W. Kuntze-Fechner, M.;
Krummenacher, I.; Braunschweig, H.; Radius, U.; Steffen, A.; B.
Marder, T. J. Am. Chem. Soc. 2018, 140, 17612.
chemistry, biology and medicine.
Experimental
To a 25 mL Schlenk tube was purged with argon for three
times, and then added fluoroalkenes 1a (43.2 mg, 0.2 mmol),
PhMe2SiBpin (I, 78.6 mg, 1.5 equiv), NaOMe (16.2 mg, 1.5 equiv)
[4] (a) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375; (b) Fleming,
I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063; (c) Hiyama, T.;
Organomet, J. Organomet. Chem.2002, 653, 58; (d) Komiyama, T.;
Minami, Y.; Hiyama, T. ACS Catal.2017, 7, 631.
o
and THF (1 mL). The formed mixture was stirred at 45 C under
argon for 12 h monitored by TLC. The solution was then cooled to
room temperature and the solvent was removed under vaccum
directly. The crude products were purified by column
chromatography on silica gel to afford product 1b (61.8 mg, 93%)
as a colorless liquid.
[5] Cui, B.-Q.; Jia, S.-C.; Tokunaga, E.; Shibata, N. Nat. Commun.2018, 9,
4393.
[6] (a) Douvris, C.; Ozerov, O. V. Science.2008, 321, 1188; (b) Allemann,
O.; Duttwyler, S.; Romanato, P.; Baldridge, K. K.; Siegel, J. S. Science.
2011, 332, 574; (c) Yoshida, S.; Shimomori, K.; Kim, Y.; Hosoya, T.
Angew. Chem. Int. Ed.2016, 55, 10406.
Supporting Information
The supporting information for this article is available on the
[7] Mallick, S.; Xu, P.; Würthwein, E.-U.; Studer, A. Angew. Chem. Int. Ed.
2019, 58, 283.
Acknowledgement
[8] Liu, X.-W.; Zarate, C.; Martin, R. Angew. Chem. Int. Ed.2019, 58,
2064.
We thank the National Natural Science Foundation of China
(Grants 2167020084 and 21673110) and the “Innovation &
Entrepreneurship Talents Plan” of Jiangsu Province for their
financial support. Parts for the calculations that were performed
using computational resources on an IBM Blade cluster system
from the High-Performance Computing Center (HPCC) of Nanjing
University.
[9] While this manuscript was under revision, Crimmin et al. reported a
related method on transition metal free generation of fluorinated
organosilanes from fluoroolefins using well-defined nucleophilic
silicon reagents: Coates, G., Tan, H. Y., Kalff, C., White, A. J. P.;
Crimmin,
M.
R.
Angew.
Chem.
Int.
Ed.
2019,
DOI:10.1002/anie.201906825.
References
[10] (a) Chelucci, G. Chem. Rev. 2012, 112, 1344; (b) Pan, Y.; Qiu, J.;
Silverman, R. B. J. Med. Chem. 2003, 46, 5292.
[1] Uneyama, K. Hydrogen Bonding in Organofluorine Compounds in
Organofluorine Chemistry, Blackwell Publishing, Oxford, UK.2006.
[2] (a) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765; (b) Yang, X.; Wu,
T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826; (c) Furuya, T.;
Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470; (d) Zhu, Y.; Han, J.;
Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V. A.; Coelho, J.A.S.;
Toste, F. D. Chem. Rev. 2018, 118, 3887; (e) Tian, P.; Feng, C.; Loh,
T.-P. Nat. Commun. 2015, 6, 7472; (f) Huang, Y.-H.; Hayashi, T. J. Am.
Chem. Soc. 2016, 138, 12340; (g) Xie, J.; Yu, J.-T.; Rudolph, M.;
Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 9416;
(h) Thornbury, R. T.; Toste, F. D. Angew. Chem. Int. Ed.2016, 55,
11629; (i) Wu, J.; Zhang, S.; Gao, H.; Qi, Z.; Zhou, C.; Ji, W.; Liu, Y.;
Chen, Y.; Li, Q.; Li, X.; Wang, H. J. Am. Chem. Soc. 2017, 139, 3537; (j)
Jang, Y.; Rose, D.; Mirabi, B.;Lautens, M. Angew. Chem. Int. Ed.
2018,57, 16147.
[11] (a) Liu, T.; Wu, J.; Y. Zhao. Chem. Sci. 2017, 8, 3885; (b) Dolbier, W. R.
Acc. Chem. Res.1991, 24, 63; (c) Fustero, S.; Simón-Fuentes, A.;
Barrio, P.; Haufe, G.-O. Chem. Rev. 2015, 115, 871.
[12] Tellier, F.; Baudry, M.; Sauvêtre, R. Tetrahedron Lett.1997, 38, 5989.
[13] (a) Sakaguchi, H.; Ohashi, M.; Ogoshi, S. Angew. Chem. Int. Ed.2018,
57, 328; (b) Tan, D.-H.; Lin, E.; Ji, W.-W.; Zeng, Y.-F.; Fan, W.-X.; Li,
Q.-J.; Gao, H.; Wang, H.-G. Adv. Synth. Catal.2018, 360, 1032.
[14] (a) Oestreich, M.; Hartmann, E.; Mewald, M. Chem. Rev.2013, 113,
402; (b) Wang, M.; Liu, Z.; Zhang, X.; Tian, P.; Xu, Y.; Loh, T.-P. J. Am.
Chem. Soc. 2015, 137, 14830; (c) Guo, L.; Chatupheeraphat, A.;
Rueping, M. Angew. Chem. Int. Ed. 2016, 55, 11810; (d) Pu, X.; Hu, J.;
Zhao, Y.; Shi, Z. ACS Catal.2016, 6, 6692; (e) Xue, W.; Qu, Z.; Grimme,
S.; Oestreich, M. J. Am. Chem. Soc.2016, 138, 14222; (f) Xue. W.;
Oestreich. M. Angew. Chem. Int. Ed.2017, 56, 11649; (g) Yamamoto.
T.; Murakami. R.; Komatsu. S.; Suginome. M. J. Am. Chem. Soc.2018,
140, 3867; (h) Nagashima, Y.; Yukimori, D.; Wang, C.; Uchiyama, M.
Angew. Chem. Int. Ed. 2018, 57, 8053; (i) Gu, Y.; Shen, Y.; Zarate, C.;
Martin, R. J. Am. Chem. Soc. 2019,141, 127.
[3] (a) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119; (b) Stahl, T.;
Klare, H. F. T.; Oestreich, M. ACS Catal.2013, 3, 1578; (c) Ahrens, T.;
Kohlmann, J.; Ahrens, M.; Braun, T. Chem. Rev. 2015, 115, 931; (d)
Fujita, T.; Fuchibe, K.; Ichikawa, J. Angew. Chem. Int. Ed. 2019, 131,
390; (e) Hu, J.; Han, X.; Yuan, Y.; Shi, Z. Angew. Chem. Int. Ed. 2017,
56, 13342; (f) Gao, P.; Yuan, C.; Zhao, Y., Shi, Z. Chem. 2018, 4, 2201;
(g) Hu, J.; Zhao, Y.; Shi, Z. Nat. Catal. 2018, 1, 860; (h) Sakaguchi,
H.;Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T.; J. Am.
Chem. Soc. 2017, 139, 128; (i) Zhang, J.; Dai, W.-P.; Liu, Q.;Cao, S.
Org. Lett.2017, 19, 3283; (j) Kojima, R.;Kubota, K.; Ito, H. Chem.
Commun.2017, 53, 10688; (k) Kojima, R.; Akiyama, S.; Ito, H. Angew.
Chem. Int. Ed. 2018, 57, 7196; (l) Ito, H.; Seo, T.; Kojima, R.; Kubota,
K. Chem. Lett. 2018, 47, 1330; (m) Liu, X.; Echavarren, J.; Zarate, C.;
Martin, R. J. Am. Chem. Soc. 2015, 137, 1247; (n) Niwa, T.; Ochiai, H.;
[15] (a) Jeon, H.-H.; Son, J.-B.; Choi, J.-H.; Jeong, I.-H. Tetrahedron Lett.
2017, 48, 627; (b) Konno, T.; Kishi, M.; Ishihara, T.; Yamada, S. J.
Fluorine. Chem.2013, 156, 144; (c) Zhang, J., Xu, C.-Y., Wu, W.; Cao, S.
Chem. Eur. J. 2016, 22, 9902.
[16] (a) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264; (b)
Min, Q.-Q.; Yin, Z.; Feng, Z.; Guo, W.-H.; Zhang, X. J. Am. Chem. Soc.
2014, 136, 1230.
[17] Bos, M.; Huang, W.; Poisson, T.; Pannecoucke, X.; Charette, A.;
Jubault, P. Angew. Chem. Int. Ed. 2017, 56, 13319.
[18] Xu, P.; Wgrthwein, E.-U.; Daniliuc, C. G.; Studer, A. Angew. Chem. Int.
6
© 2018 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2018,template
This article is protected by copyright. All rights reserved.