1222
F. Lin et al. / Carbohydrate Research 339 (2004) 1219–1223
Table 2 (continued)
Compound 1H NMR (300 MHz, CDCl3): d
ESIMS (m=z)
2f
2g
2h
2i
5.52(s, 1H, H-1), 5.36 (s, 1H, H-1 0), 5.31 (m, 1H, H-20), 4.90 (s, 1H, H-50), 4.88 (AB, 1H, J 684.2[M þNaþ]
12.0 Hz), 4.75 (d, 1H, J 5.5 Hz, H-5), 4.68 (AB, 1H, J 12.0 Hz), 4.57 (d, 1H, J 7.0 Hz,
CH2Ph), 4.13 (d, 1H, J 7.0 Hz), 4.05 (d, 1H, J 7.2Hz, H-4), 3.92(br, 1H), 3.82 (m, 1H),
3.79 (s, 3H, OMe), 3.77 (m, 1H), 3.68 (m, 1H), 3.26 (d, 1H, J 3 Hz, H-2).
8.10–7.25 (m, 20H, Ph), 5.37 (s, 1H, H-10), 5.21 (br, 1H, H-20), 4.97 (d, 1H, J 2.1 Hz,
H-50), 4.76 (AB, 2H, J 11.4 Hz), 4.81–4.67 (m, 4H), 4.48 (AB, 1H, J 12.0 Hz), 4.02 (d, 1H,
J 7.8 Hz), 4.13–3.96 (m, 2H), 3.92–3.86 (m, 2H), 3.48 (s, 3H, OMe), 3.45 (s, 3H, OMe),
3.44 (m, 1H), 2.66 (d, 1H, J 9.0 Hz, OH).
820.3 [MþNaþ]
7.97–7.37 (m, 10H, Ph), 5.51 (dd, 1H, J 9.5 Hz, H-30), 5.39 (dd, 1H, J 8.6 Hz, H-20), 4.86 832.5 [MþNHþ4 ]
(d, 1H, J 7.8 Hz, H-10), 4.39 (m, 1H, H-16), 4.19 (dd, 1H, J 9.3 Hz, H-40), 4.07 (d, 1H, J
9.6 Hz, H-50), 3.86 (s, 3H, OMe), 3.62(m, 1H, H-3), 3.47–3.30 (m, 2H), 0.74 (d, 3H,
J
6.9 Hz), 0.78 (d, 3H, J 6.0 Hz), 0.72, 0.68 (s each, 2 ꢂ Me).
8.01–7.35 (m, 10H, Ph), 5.53 (dd, 1H, J 10.2Hz, H-3 0), 5.41 (dd, 1H, J 9.6 Hz, H-20), 5.26 835.4 [MþNaþ]
(d, 1H, J 4.8 Hz, H-6), 4.87 (d, 1H, J 5.4 Hz, H-10), 4.40 (m, 1H, H-16), 4.19 (m, 1H), 4.08
(d, 1H, J 9.9 Hz, H-50), 3.86 (s, 3H, OMe), 3.59–3.34 (m, 3H), 0.98 (d, 3H, J 6.6 Hz, Me),
0.92(s, 3H, Me), 0.79 (d, 3H, J 6.6 Hz, Me), 0.76 (s, 3H, Me).
2j
(CD3OD): 5.43 (d, 1H, J 7.7 Hz, H-10), 5.26 (t, 1H, J 3.6 Hz, H-12), 3.91 (d, 1H, J 9.6 Hz, 669.4 [MþNaþ]
H-50), 3.77 (s, 3H, OMe), 3.57 (t, 1H, J 9.1 Hz), 3.45 (t, 1H, J 8.4 Hz), 3.39 (t, 1H, J
9.1 Hz), 3.15 (m, 1H, H-3), 2.88 (m, 1H, H-18), 1.28, 1.16, 0.98, 0.95, 0.92, 0.78, 0.77
(7 ꢂ s, 7 ꢂ Me).
2k
5.97 (t, 1H, J 9.6 Hz), 5.94 (d, 1H, J 8.5 Hz), 5.90 (t, 1H, J 9.8 Hz), 5.78–5.69 (m, 2H), 2403.3 [MþNaþ]
5.58 (t, 2H, J 8.4 Hz), 5.52–5.43 (m, 2H), 5.38 (d, 1H, J 3.6 Hz), 5.27 (s, 1H), 4.68 (d, 1H,
J 7.7 Hz), 4.60 (d, 1H, J 8.0 Hz), 4.56 (dd, 1H, J 12.4, 2.8 Hz), 4.45 (dd, 1H, J 12.2,
4.8 Hz), 4.42–4.30 (m, 2H), 4.28–4.16 (m, 2H), 4.03 (dd, 1H, J 11.0, 7.7 Hz), 3.88–3.75 (m,
2H), 3.78 (s, 3H), 3.70 (d, 1H, J 9.6 Hz), 3.58 (t, 1H, J 8.6 Hz), 3.53 (s, 1H), 3.02(dd, 1H,
J 15.7, 4.2Hz), 2.78 (d, 1H, J 9.0 Hz), 2.62 (m, 1H), 2.33 (t, 1H, J 6.9 Hz), 1.16, 1.02, 0.98,
0.95, 0.86, 0.82, 0.42 (7 ꢂ s, 7 ꢂ Me).
2l
See Ref. 14.
2. (a) Lindberg, B.; Kenne, L. In The Polysaccharides;
Academic: New York, 1985; Vol. 2, p 287; (b) Lindberg,
B. Adv. Carbohydr. Chem. Biochem. 1990, 48, 279.
3. Hostettmann, K.; Marston, A. Saponins; Cambridge, UK:
Cambridge University Press, 1995.
4. For a comprehensive review on glucuronide synthesis, see:
Stachulski, A. V.; Jenkins, A. N. Nat. Prod. Rep. 1998,
173–186.
slowly in small portions. After 45 min at 0 °C, the reac-
tion was quenched with Na2S2O3 (100 mg). After addi-
tion of water (1.5 mL) and CH2Cl2 (4 mL), aq HCl (6 N)
was added to adjust the final pH to pH 3. Then the
organic phase was separated, and the remaining aq phase
was extracted with CH2Cl2. The combined organic phase
was washed with brine, dried with Na2SO4, and then
concentrated in vacuo. In order to facilitate the purifi-
cation and characterization, the corresponding methyl
uronate was prepared via treating the crude uronate with
CH2N2 in THF at rt. Chromatography on a silica gel
column provided the desired 2f (329 mg, 83%). See Table
2for characterization data for compounds 2a–l.
5. Relevant Ref. cited in: Yu, B.; Zhu, X.; Hui, Y. Org. Lett.
2000, 2, 2539–2541.
6. For selective oxidation of saccharides to uronates with
TEMPO–Brꢀ–NaOCl, see, for example: (a) Davis, N. J.;
Flitsch, S. L. Tetrahedron Lett. 1993, 34, 1181–1184; (b)
Davis, N. J.; Flitsch, S. L. J. Chem. Soc., Perkin Trans. 1
1994, 359–368; (c) de Nooy, A. E. J.; Besemer, A. C.; van
Bekkum, H. Carbohydr. Res. 1995, 269, 89–98; (d) Heeres,
A.; van Doren, H. A.; Gotlieb, K. F.; Bleeker, I. P.
Carbohydr. Res. 1997, 299, 221–227; (e) Battistelli, C. L.;
De Castro, C.; Iadonisi, A.; Lanzetta, R.; Mangoni, L.;
Parrilli, M. J. Carbohydr. Chem. 1999, 18, 69–86; (f)
Garegg, P. J.; Oscarson, S.; Tedebark, U. J. Carbohydr.
Chem. 1998, 17, 587–594; (g) Yeung, B. K. S.; Hill, D. C.;
Janicka, M.; Petillo, P. A. Org. Lett. 2000, 2, 1279–1282;
(h) Kraus, T.; Budesinsky, M.; Zavada, J. Eur. J. Org.
Chem. 2000, 3133–3137; (i) Haller, M.; Boons, G.-J.
J. Chem. Soc., Perkin Trans. 1 2001, 814–822; (j) Thabu-
ret, J.-F.; Merbouh, N.; Ibert, M.; Marsais, F.; Queguiner,
G. Carbohydr. Res. 2001, 330, 21–29; (k) Soderman, P.;
Widmalm, G. Eur. J. Org. Chem. 2001, 3453–3456; (l)
Lefeber, D. J.; Arevalo, E. A.; Kamerling, J. P.; Vliegent-
hart, J. F. G. Can. J. Chem. 2002, 80, 76–81; (m) Bouktaib,
M.; Atmani, A.; Rolando, C. Tetrahedron Lett. 2002, 43,
6263–6266; (n) Brochette-Lemoine, S.; Joannard, D.;
Descotes, G.; Bouchu, A.; Queneau, Y. J. Mol. Catalysis
Acknowledgements
This work was supported by the National Natural Sci-
ence Foundation of China (29925203) and the Com-
mittee of Science and Technology of Shanghai
(02QMA1401).
References
1. (a) Bhavanandan, V. P.; Davidson, E. A. In Glycoconju-
gates; Allen, H. J., Kisailus, E. C., Eds.; Marcel Dekker:
New York, 1992; p 167; (b) Kjellen, L.; Lindahl, U. Ann.
Rev. Biochem. 1991, 60, 443.