C O M M U N I C A T I O N S
coordination in 3. Diene coordination isomerization has previously
been reported for bis-Cp zirconium diene complexes, where heat
and light interconverted a σ-bound s-cis and a π-bound s-trans
butadiene or alkyl substituted diene ligand.10 It seems unlikely in
the current case that such an interconversion is occurring because
an aryl substituted diene ligand is used, which previously have been
shown not to interconvert, and 3 has been subjected to temperatures
as high as refluxing octane with no change in diene coordination.
The most likely scenario is a coordination isomerization during the
stepwise metalation reaction. After one-half of the ansa-bis(indenyl)
ligand coordinates to the zirconium center, the diene ligand
isomerizes to the π-bound s-trans coordination mode and then
directs the second half of the ansa-bis(indenyl) ligand to coordinate
to Zr in exclusively the rac-orientation.
Figure 1. Molecular structure of 1a. Selected bond lengths (Å): Zr-C1
) 2.438(3), Zr-C2 ) 2.488(5), Zr-C3 ) 2.424(5), Zr-C4 ) 2.421(3),
C1-C2 ) 1.263(3), C2-C3 ) 1.406(5), C3-C4 ) 1.267(3).
The divalent ansa-zirconocene 3 can be readily activated with
common activators such as MAO and perfluorophenyl derivatives
of neutral or ionic B and Al complexes, generating a highly active
propylene polymerization catalyst. For example, upon activation
with B(C6F5)3/iBu2Al(BHT), zirconocene 3 produces isotactic
polypropylene having Tm ) 157 °C, Mw ) 1.92 × 105, PDI )
1.79 at a 70 °C polymerization temperature and with an extremely
high efficiency of 1.17 × 108 g PP/g Zr.3,5
In conclusion, this work introduces a novel, highly efficient
synthesis of racemic ansa-zirconocene(II) catalysts. The proposed
configurational interplay between the diene and ansa-bis(indenyl)
ligands accounts for the high stereoselectivity in this synthesis.
Supporting Information Available: Experimental details (PDF)
and complete X-ray crystallographic data for complexes 1a and 3 (CIF).
This material is available free of charge via the Internet at
References
Figure 2. Molecular structure of 3. Selected bond lengths (Å): Zr-C35
) 2.523(2), Zr-C36 ) 2.394(2), Zr-C37 ) 2.387(2), Zr-C38 )
2.515(2), C35-C36 ) 1.423(3), C36-C37 ) 1.412(2), C37-C38 )
1.417(3).
(1) (a) Damrau, H.-R. H.; Royo, E.; Obert, S.; Schaper, F.; Weeber, A.;
Brintzinger, H.-H. Organometallics 2001, 20, 5258-5265. (b) Zhang, X.;
Zhu, Q.; Guzei, I.; Jordan, R. F. J. Am. Chem. Soc. 2000, 122, 8093-
8094. (c) Thiyagarajan, B.; Jordan, R. F.; Young, V. G., Jr. Organome-
tallics 1999, 18, 5347-5359. (d) Strickler, J. R.; Power, J. M. U.S. Patent
5,847,175, 1998. (e) Diamond, G. M.; Jordan, R. F.; Petersen, J. L. J.
Am. Chem. Soc. 1996, 118, 8024-8033. (f) Christopher, J. N.; Diamond,
G. M.; Jordan, R. F.; Petersen, J. L. Organometallics 1996, 15, 4038-
4044. (g) Diamond, G. M.; Rodewald, S.; Jordan, R. F. Organometallics
1995, 14, 5-7.
(2) (a) Stehling, U.; Diebold, J.; Kirsten, R.; Ro¨ll, W.; Brintzinger, H.-H.;
Ju¨ngling, S.; Mu¨lhaupt, R.; Langhauser, F. Organometallics 1994, 13,
964-970. (b) Spaleck, W.; Kuber, F.; Winter, A.; Rohrmann, J.;
Bachmann, B.; Antberg, M.; Dolle, V.; Paulus, E. F. Organometallics
1994, 13, 954-963. (c) Spaleck, W.; Antberg, M.; Rohrmann, J.; Winter,
A.; Bachmann, B.; Kiprof, P.; Behm, J.; Herrmann, W. A. Angew. Chem.,
Int. Ed. Engl. 1992, 31, 1347-1350.
The two phosphine ligands are arranged in a trans orientation, as
are the two chloride ligands.
The reaction of 1 with Li2{Me2Si(2-Me-4-Ph-Ind)2} (Scheme 1)
in toluene proceeds cleanly to form the desired racemic ansa-
zirconocene(II) diene complex 3 in quantitative yield (for an
isolation of 8.6 g of 3, the yield was 98%).5 At no time during the
1
reaction is any meso-isomer detected by H NMR spectroscopy.
The crystal structure of 3 (Figure 2) features the s-trans, π-bound
diene ligand, consistent with the Zr center being in the formal +2
oxidation state. The average Zr-C bond distance to the diene
termini is 0.128 Å longer than those to the internal carbon atoms,
which supports the Zr(II) assignment. The indenyl ligands are
arranged in the desired rac-orientation, and the “lock and key” fit
between the 1,4-diphenyl-1,3-butadiene ligand and the two substi-
tuted indenyl ligands is readily apparent from the structure, where
the two diene phenyl groups are placed into the coordination sphere
voids of the rac-structure. This “lock and key” arrangement clearly
minimizes the steric interactions of the diene phenyl rings with the
methyl and phenyl indenyl substituents. A meso-indenyl arrange-
ment would dispose at least two phenyl rings (one diene and one
indenyl) to very close proximity that clearly would be destabilizing;
this is probably why the meso-isomer is not observed.
(3) Chen, E. Y.; Campbell, R. E.; Devore, D. D.; Green, D. P.; Patton, J. T.;
Soto, J.; Wilson, D. R. U.S. Patent 6,127,563, 2000; PCT Int. Appl. WO
99/46270, 1999.
(4) For reactions involving other ligands, see ref 3.
(5) See the Supporting Information for synthesis and characterization details.
(6) (a) Diamond, G. M.; Green, M. L. H.; Walker, N. M.; Howard, J. A. K.
J. Chem. Soc., Dalton Trans. 1992, 2641-2646. (b) Green, M. L. H.;
Walker, N. M. J. Chem. Soc., Chem. Commun. 1989, 1865-1867.
(7) (a) Schrock et al. first reported the preparation of such Zr(III) dimers
from the reduction of ZrCl4(PR3)2 with Na/Hg: Wengrovius, J. H.;
Schrock, R. R.; Day, C. S. Inorg. Chem. 1981, 20, 1844-1849. (b) For
the crystal structure of 2a, see: Cotton, F. A.; Diebold, M. P.; Kibala, P.
A. Inorg. Chem. 1988, 27, 799-804.
(8) (a) Yamamoto, H.; Yasuda, H.; Tatsumi, K.; Lee, K.; Nakamura, A.; Chen,
J.; Kai, Y.; Kasai, N. Organometallics 1989, 8, 105-19. (b) Kru¨ger, C.;
Mu¨ller, G.; Erker, G.; Dorf, U.; Engel, K. Organometallics 1985, 4, 215-
223.
(9) Devore, D. D.; Timmers, F. J.; Hasha, D. L.; Rosen, R. K.; Marks, T. J.;
Deck, P. A.; Stern, C. L. Organometallics 1995, 14, 3132-3134.
(10) Erker, G.; Kru¨ger, C.; Mu¨ller, G. AdV. Organomet. Chem. 1985, 24, 1-39.
The question arises as to how the diene-bonding mode transforms
from a π-bound, s-cis coordination in 1 to a π-bound s-trans
JA0381611
9
J. AM. CHEM. SOC. VOL. 126, NO. 1, 2004 43