J. Xue, Z. Guo / Bioorg. Med. Chem. Lett. 12 (2002) 2015–2018
2017
References and Notes
1. (a) Treumann, A.; Lifely, M. R.; Schneider, P.; Ferguson,
M. A. J. J. Biol. Chem. 1995, 270, 6088. (b) Hale, G.; Xia, M.-
Q.; Tighe, H. P.; Dyer, J. S.; Waldmann, H. Tissue Antigens
1990, 35, 118. (c) Isaac, J. D.; Watts, R. A.; Hazleman, B. L.;
Hale, G.; Keogan, M. T.; Cobbold, S. P.; Waldmann, H.
Lancet 1992, 340, 748. (d) Pawson, R.; Dryer, M. J. S.; Barge,
R.; Matutes, E.; Thornton, P. D.; Emmett, E.; KluinNele-
mans, J. C.; Fibbe, W. E.; Willemze, R. J. Clin. Oncol. 1997,
15, 2667.
Scheme 4. Reagents and conditions: (a) (NCCH2CH2O)P(NPri2)2 (24),
diisopropylaminium tetrazolide, CH2Cl2–MeCN, rt, 2 h.
2. (a) Tsuji, Y. Carbohydrate antigens recognized by anti-
sperm antibodies. In Immunology of Human Reproduction;
Kurpisz, M., Fernandez, N., Eds.; BIOS: Oxford, 1995; p. 23.
(b) Schroter, S.; Derr, P.; Conradt, H. S.; Nimtz, M.; Hale, G.;
Kirchhoff, C. J. Biol. Chem. 1999, 274, 29862. (c) Litscher,
E. S.; Juntunen, K.; Seppo, A.; Penttila, L.; Niemela, R.;
Renkenon, O.; Wassarman, P. M. Biochemistry 1995, 34,
4662. (d) Kameda, K.; Tsuji, Y.; Koyama, K.; Isojima, S. Biol.
Reprod. 1992, 46, 349. (e) Eccleston, E. D.; White, T. W.;
Howard, J. B.; Hamilton, D. W. Mol. Reprod. Dev. 1994, 37,
110. (f) Diekman, A.; Norton, E. J.; Klotz, K. L.; Westbrook,
V. A.; Shibahara, H.; Naaby-Hansen, S.; Flickinger, C. J.;
Herr, J. C. FESEB J. 1999, 13, 1303.
3. (a) Ferguson, M. A. J.; Williams, A. F. Annu. Rev. Bio-
chem. 1988, 57, 285. (b) Englund, P. T. Annu. Rev. Biochem.
1993, 62, 121. (c) Udenfriend, S.; Kodukula, K. Annu. Rev.
Biochem. 1995, 64, 563. (d) Robinson, P. J. Cell Biol. Intern.
Rep. 1991, 15, 761. (e) Thomas, J. R.; Dwek, R. A.; Radma-
cher, T. W. Biochemistry 1990, 29, 5413.
4. (a) Crossman, A., Jr.; Brimacombe, J. B.; Ferguson,
M. A. J.; Smith, T. K. Carbohydr. Res. 1999, 321, 42. (b)
Cottaz, S.; Brimacombe, J. S.; Ferguson, M. A. J. Carbohydr.
Res. 1995, 270, 85.
5. (a) Campbell, A. S.; Fraser-Reid, B. J. Am. Chem. Soc.
1995, 117, 10387. (b) Udodong, U. E.; Madsen, R.; Roberts,
C.; Fraser-Reid, B. J. Am. Chem. Soc. 1993, 115, 7886.
6. (a) Baeschlin, D. K.; Chaperon, A. R.; Charbonneau, V.;
Green, L. G.; Ley, S. V.; Lucking, U.; Walther, E. Angew.
Chem., Int. Ed. 1998, 37, 3423. (b) Baeschlin, D. K.; Cha-
peron, L. R.; Green, L. G.; Hahn, M. G.; Ince, S. J.; Ley, S. V.
Chem. Eur. J. 2000, 6, 172.
7. (a) Kratzer, B.; Mayer, T. G.; Schmidt, R. R. Eur. J. Org.
Chem. 1998, 291. (b) Mayer, T. G.; Schmidt, R. R. Eur. J.
Org. Chem. 1999, 1153. (c) Mayer, T. G.; Weingart, R.; Mun-
stermann, F.; Kawada, T.; Kurzchalia, T.; Schmidt, R. R.
Eur. J. Org. Chem. 1999, 2563. (d) Mayer, T. G.; Kratzer, B.;
Schmidt, R. R. Angew. Chem., Intl. Ed. Eng. 1994, 33, 2177.
8. (a) Murakata, C.; Ogawa, T. Tetrahedron Lett. 1990, 31,
2439. (b) Murakata, C.; Ogawa, T. Carbohydr. Res. 1992, 235,
95. (d) Murakata, C.; Ogawa, T. Tetrahedron Lett. 1991, 32,
671.
9. (a) Martin-Lomas, M.; Khiar, N.; Garcia, S.; Koessler, J.;
Nieto, P. M.; Rademacher, W. Chem. Eur. J. 2000, 6, 3608. (b)
Garegg, P. J.; Konradsson, P.; Oscarson, S.; Ruda, K. Tetra-
hedron 1997, 53, 17727.
10. (a) Guo, Z.; Nakahara, Y.; Nakahara, Y.; Ogawa, T.
Bioorg. Med. Chem. 1997, 5, 1917. (b) Guo, Z.; Nakahara, Y.;
Nakahara, Y.; Ogawa, T. Angew. Chem., Int. Ed. Engl. 1997,
36, 1464.
Scheme 5. Reagents and conditions: (a) Cp2HfCl2, AgOTf, MS 4A,
Et2O, À15 ꢀC to rt, overnight; (b) CAN, H2O–MeCN (1:9), rt, 2 h; (c)
4, tetrazole, MS 3A, CH2Cl2–MeCN, rt, 6 h; O2, light.
a promoter (Scheme 5), and a mixture of the expected
product 25 and its b-anomer (4:3) was obtained in 70%
yield. The anomers were easily separable on a silica gel
column. Meanwhile, it was interesting to notice that the
same reaction carried out in CH2Cl2 gave a mixture in
favor of the b-isomer (a/b=4:5). After removal of the
MBn in 25 by oxidation with CAN, 26 was obtained in
a good yield (80%). Finally, phosphorylation of 26 by 4
in the presence of tetrazole proceeded very smoothly to
give a product (67% yield after column chroma-
tography) that was projected to be a phosphite. How-
ever, the 31P NMR (d 8.71, 7.35) and MS spectra clearly
indicated that the product was a diastereoisomeric
mixture of the expected final product 114 that might
result from the oxidation of the phosphite by oxygen on
the column, which was previously observed by Frier15 as
well.
In conclusion, this paper described a highly convergent
synthesis of a GPIanchor ( 1) of sperm CD52. Since the
4-position of its glucosamine residue, which is protected
by an allyl group, can be selectively exposed, it will be
possible to further modify the glycan for the prepara-
tion of intact CD52 GPIanchors. In the meantime, this
paper also presented a new and effective method to
prepare an enantiomerically pure derivative (5) of
d-myo-inositol with its 1,2,6-positions well differ-
entiated. Because the inositol residue in many GPI
anchors has its 2-position modified by various lipid
chains, 5 can be widely useful to the synthesis of other
GPIanchors. The synthesis of 5 is highlighted by
making use of both enantiomers of an intermediate.
Enantiomers of inositol derivatives were previously
employed by Chen11a and Fraser-Reid5a in their works,
but these studies, like ours, used both enantiomers of a
certain intermediate in different ways and for different
purposes.
11. (a) Gou, D.; Liu, Y.; Chen, C. Carbohydr. Res. 1992, 234,
51. (b) Lu, P.; Gou, D.; Shieh, W.; Chen, C. Biochemistry
1994, 33, 11586. (c) Wang, D.; Hsu, A.; Song, X.; Chiou, C.;
Chen, C. J. Org. Chem. 1998, 63, 5430. (d) Desai, T.; Fernan-
dez-Mayoralas, A.; Gigg, J.; Gigg, R.; Payne, S. Carbohydr.
Res. 1990, 205, 105. (e) Desai, T.; Gigg, J.; Gigg, R.; Payne, S.
Carbohydr. Res. 1992, 225, 209. (f) Leung, L. W.; Bittman, R.
Carbohydr. Res. 1998, 305, 171. (g) Garegg, P. J.; Iversen, T.;
Johansson, R.; Lindberg, B. Carbohydr. Res. 1984, 130, 322.
Acknowledgements
This project was supported by the Research Cor-
poration. We thank Mr. Jim Faulk for the MS
measurements.