C O M M U N I C A T I O N S
directed carboxylic acid functionality initiates the cyclization
of these substrates to afford the five- and six-membered ring
products 6-8. This synthetic system incorporates the arrange-
ment of functionality and the unique solvation provided within
the structured interiors of natural enzymes. In contrast to flexible
receptors for selective recognition,34 these cavitands catalyze
the regiocontrolled transformation of epoxyalcohols into cyclic
ethers. A full account of the kinetic and mechanistic studies of
this system will be reported in due course.
Acknowledgment. We are grateful to the Skaggs Institute
for Research, and the National Institutes of Health (GM 27932)
for financial support. S.R.S. thanks the San Diego Foundation
Blasker Science and Technology Fellowship for financial
support. S.R.S. and F.P.C. thank Prof. Dr. Yoshiki Morimoto
for helpful correspondence on structural determinations, and Dr.
Laura B. Pasternack for assistance with NMR spectroscopy.
Supporting Information Available: Detailed experimental
procedures and kinetic study data. This material is available free
References
(1) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734–736.
(2) Baldwin, J. E.; Reiss, J. A. J. Chem. Soc., Chem. Commun. 1977, 77.
(3) Stork, G.; Cama, L. D.; Coulson, D. R. J. Am. Chem. Soc. 1974, 96, 5268–
5270.
(4) Stork, G.; Cohen, J. F. J. Am. Chem. Soc. 1974, 96, 5270–5272.
(5) Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189–1192.
(6) Corey, E. J.; Lee, J. J. Am. Chem. Soc. 1993, 115, 8873–8874.
(7) Fish, P. V.; Sudhakar, A. R.; Johnson, W. S. Tetrahedron Lett. 1993, 34,
7849–7852.
1
Figure 4. Sections of the H NMR spectra of the reactions of alcohols 3
(a), 4 (b), and 5 (c) inside introverted acid cavitand 1. Regions of the spectra
corresponding to the starting epoxides are marked with blue squares. Regions
of the spectra corresponding to the product ethers are marked with either
red circles and/or green diamonds.
(8) de la Torre, M. C.; Sierra, M. A. Angew. Chem., Int. Ed. 2004, 43, 160–181.
(9) Wendt, K. U.; Schulz, G. E.; Corey, E. J.; Liu, D. R. Angew. Chem., Int.
Ed. 2000, 39, 2812–2833.
(10) Cane, D. E.; Celmer, W. D.; Westley, J. W. J. Am. Chem. Soc. 1983, 105,
3594–3600.
enhancement over the control reaction with using model acid 2
(t1/2cavitand1 ) 5.3 h, t1/2acid2 ) 27 days).
(11) Nakanishi, K. Toxicon 1985, 23, 473–479.
(12) Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. J. Am. Chem.
Soc. 2007, 129, 7000–7001.
Several factors may be responsible for the rate enhancement
observed in this system. First, molecular recognition is involved
(as it is in any bimolecular reaction), but the substrate is more
or less surrounded by the catalyst of finite capacity. Second,
complexation exposes the epoxyalcohol substrates to a high local
concentration of a Brønsted acid.18 Third, CH-π contacts
between the concave π-surface of the host and the alkyl
backbone of the guest induce the coiling of the substrate inside
the cavitand.30–32 Such coiling brings the reactive centers of
the epoxyalcohols in close proximity, folding the substrates into
conformations resembling the transition-state structures of the
cyclization reactions.
(13) (a) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc.
2007, 129, 11459–11467. (b) Grotzfeld, R. M.; Branda, N.; Rebek, J., Jr.
Science 1996, 271, 487–489. (c) Brody, M.; Schalley, C. A.; Rudkevich,
D. M.; Rebek, J., Jr. Angew. Chem., Int. Ed. 1999, 38, 1640–1644.
(14) Makeiff, D. A.; Vishnumurthy, K.; Sherman, J. C. J. Am. Chem. Soc. 2003,
125, 9558–9559.
(15) Natarajan, A.; Kaanumalle, L. S.; Jockusch, S.; Gibb, C. L. D.; Gibb, B. C.;
Turro, N. J.; Ramamurthy, V. J. Am. Chem. Soc. 2007, 129, 4132–4133.
(16) (a) Chen, J.; Rebek, J., Jr. Org. Lett. 2002, 4, 327–329. (b) Shivanyuk, A.;
Rebek, J., Jr. Chem. Commun. 2001, 2374–2375.
(17) Hooley, R. J.; Iwasawa, T.; Rebek, J., Jr. J. Am. Chem. Soc. 2007, 129,
15330–15339.
(18) Purse, B. W.; Ballester, P.; Rebek, J., Jr. J. Am. Chem. Soc. 2003, 125,
14682–14683.
(19) Butterfield, S.; M.; Rebek, J., Jr. J. Am. Chem. Soc. 2006, 128, 15366–15367.
(20) Lutter, H.-D.; Diederich, F. Angew. Chem., Int. Ed. Engl. 1986, 25, 1125–
1127.
The coiling of substrates inside the cavitand can also explain
the regioselectivity observed in this reaction.30–32 The aromatic
walls of cavitand 1 form multiple CH-π contacts with the geminal
methyl groups at the alcohol terminus of substrates 3 and 5. These
interactions are believed to impose strong conformational control
over these acyclic epoxyalcohols. Such binding limits the confor-
mational flexibility of these guests within the cavitand and directs
the reactions to proceed via the compressed five-membered-ring
transition-state structures leading to THF products. Primary alcohol
4 garners fewer CH-π contacts33 with the aromatic walls of the
receptor and is consequently less conformationally constrained. For
this reason, the acyclic alcohol 4 enjoys greater flexibility within
the cavitand and undergoes reaction through both the compressed
five-membered ring and the more extended six-membered ring
transition-state structures leading to both THF and THP products
7a and 7b.
(21) Hoegberg, A. G. S. J. Am. Chem. Soc. 1980, 102, 6046–6050.
(22) Renslo, A. R.; Rebek, J., Jr. Angew. Chem., Int. Ed. 2000, 39, 3281–3283.
(23) Kemp, D. S.; Petrakis, K. S. J. Org. Chem. 1981, 46, 5140–5143.
(24) Rudkevich, D.; Hilmersson, G.; Rebek, J., Jr. J. Am. Chem. Soc. 1998,
120, 12216–12225.
(25) Morimoto, Y.; Nishikawa, Y.; Ueba, C.; Tanaka, T. Angew. Chem., Int.
Ed. 2006, 45, 810–812.
(26) The reaction of epoxyalcohol 3 with acid 2 provided an 87:13 ratio of
THF:THP products.
(27) The reaction of epoxyalcohol 4 with camphorsulfonic acid and acid 2
provided a 30:70 ratio of THF:THP products 7a and 7b.
(28) Ajami, D.; Iwasawa, T.; Rebek, J., Jr. Proc. Natl. Acad. Sci. U.S.A. 2006,
103, 8934–8936.
(29) The reaction of epoxyalcohol 5 with camphorsulfonic acid or acid 2
provided a 60:40 ratio of THF:THP products.
(30) Purse, B. W.; Rebek, J., Jr. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 2530–-
2534.
(31) Scarso, A.; Trembleau, L.; Rebek, J., Jr. J. Am. Chem. Soc. 2004, 126,
13512–13518.
(32) Trembleau, L.; Rebek, J., Jr. Science 2003, 301, 1219–1221.
(33) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem., Int. Ed. 2003,
42, 1210–1250.
(34) Gala´n, A.; de Mendoza, J.; Toiron, C.; Bruix, M.; Deslongchamps, G.;
Rebek, J., Jr. J. Am. Chem. Soc. 1991, 113, 9424–9425.
In conclusion, the synthetic receptor 1 binds and controls the
conformation of 1,5-epoxyalcohol substrates 3-5. The inwardly
JA801107R
9
J. AM. CHEM. SOC. VOL. 130, NO. 17, 2008 5659