Communications
was quenched with saturated aqueous Na2S2O3 (2 mL) and the
resulting mixture was stirred vigorously until it became clear. The
mixture was then poured into Et2O (15 mL) and the ethereal phase
was washed twice with 10% aq. Na2S2O3/aq. NaHCO3 (1:1 mixture,
15 mL) and brine (15 mL) and then dried (MgSO4). Removal of the
solvent in vacuo afforded the nitrile, which was purified by silica-gel
column chromatography.
Table 4: Selected physical properties for 31, cis-34, 52, 53, and 64.
31: Rf =0.50 (silica gel, EtOAc/hexanes 1:2); IR (film): n˜max =3282, 2981,
1
1723, 1690, 1508, 1453, 1367, 1300, 1157, 1031 cmÀ1; H NM R
(400 MHz, CDCl3): d=8.04 (br s, 1H), 7.46 (d, J=15.2 Hz, 1H), 7.38–
7.32 (m, 3H), 7.28–7.26 (m, 2H), 6.90 (d, J=15.5 Hz, 1H), 4.27 (q,
J=7.0 Hz, 2H), 3.95 (s, 2H), 1.32 ppm (t, J=7.0 Hz, 3H); 13C NM R
(125 MHz, CDCl3): d=172.1, 165.0, 164.4, 134.8, 134.3, 133.0, 129.7,
129.1, 127.8, 61.7, 44.4, 14.2 ppm; HRMS (ESI TOF): calcd for
C14H15NO4Na+ [M+Na]+: 284.0893; found: 284.0898
Received: May 27, 2005
Published online: August 26, 2005
cis-34: Rf =0.78 (silica gel, EtOAc/hexanes 1:2); IR (film): n˜max =3311,
1
1673, 1616, 1480, 1395, 1378, 1220, 1030, 802, 695 cmÀ1; H NM R
Keywords: carbamates · hypervalent iodine · imides · nitriles ·
oxidation
.
(400 MHz, CDCl3): d=11.53 (br s, 1H), 7.97–7.95 (m, 2H), 7.74 (dd,
J=8.9, 11.2 Hz, 1H), 7.61–7.57 (m, 1H), 7.52–7.49 (m, 2H), 5.26 (d,
J=9.0 Hz, 1H), 4.24 (q, J=7.4 Hz, 2H), 1.33 ppm (t, J=7.4 Hz, 3H);
13C NMR (150 MHz, CDCl3): d=169.8, 164.7, 138.9, 133.1, 132.3, 129.1,
127.9, 97.4, 60.5, 14.4 ppm; HRMS (ESI TOF): calcd for C12H13NO3Na+
[M+Na]+: 242.0788; found: 242.0782
[1] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155.
[2] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277.
[3] V. V. Zhdankin, P. J. Stang, Chem. Rev. 2002, 102, 2523, and
references therein.
52: Rf =0.78 (silica gel, EtOAc/hexanes 1:1); [a]3D2 =+38 (CHCl3,
c=0.13); IR (film): n˜max =3331, 2947, 1715, 1635, 1495, 1378, 1298,
1256, 1195, 1134 cmÀ1; 1H NMR (500 MHz, CDCl3): d=8.41 (br d,
J=11.9 Hz, 1H), 8.00 (dd, J=13.8, 11.9 Hz, 1H), 5.98–5.90 (m, 1H),
5.62 (d, J=13.8 Hz, 1H), 5.33 (d, J=16.5 Hz, 1H), 5.23 (d, J=10.1 Hz,
1H), 4.65–4.64 (m, 2H), 4.20 (s, 1H), 3.71 (d, J=11.9 Hz, 1H), 3.32 (d,
J=11.9 Hz, 1H), 1.52 (s, 3H), 1.45 (s, 3H), 1.05 (s, 3H), 1.00 ppm (s,
3H); 13C NMR (125 MHz, CDCl3): d=168.1, 166.9, 136.5, 132.5, 118.1,
102.8, 99.7, 77.3, 71.4, 65.0, 33.6, 29.6, 22.0, 19.0, 18.8 ppm; HRMS
(ESI TOF): calcd for C15H23NO5Na+ [M+Na]+: 320.1468; found:
320.1464
[4] a) K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, Angew.
Chem. 2003, 115, 4211; Angew. Chem. Int. Ed. 2003, 42, 4077;
b) K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, J. Am.
Chem. Soc. 2004, 126, 5192.
[5] a) K. C. Nicolaou, P. S. Baran, R. Kranich, Y.-L. Zhong, K.
Sugita, N. Zou, Angew. Chem. 2001, 113, 208; Angew. Chem. Int.
Ed. 2001, 40, 202; b) K. C. Nicolaou, K. Sugita, P. S. Baran, Y.-L.
Zhong, Angew. Chem. 2001, 113, 213; Angew. Chem. Int. Ed.
2001, 40, 207; c) K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, K.
Sugita, Angew. Chem. 2001, 113, 2203; Angew. Chem. Int. Ed.
2001, 40, 2145; d) K. C. Nicolaou, K. Sugita, P. S. Baran, Y.-L.
Zhong, J. Am. Chem. Soc. 2002, 124, 2221.
53: [a]3D2 =+18 (MeOH, c=0.08); IR (film): n˜max =3317, 2960, 2873,
[6] a) K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, Angew. Chem. 2000,
112, 63 6;Angew. Chem. Int. Ed. 2000, 39, 622; b) K. C. Nicolaou,
P. S. Baran, Y.-L. Zhong, K. Sugita, J. Am. Chem. Soc. 2002, 124,
2212.
1
1655, 1625, 1467, 1402, 1320, 1243, 1108, 1044 cmÀ1; H NM R
(500 MHz, CD3OD): d=7.37 (d, J=8.4 Hz, 1H), 5.18 (br s, 1H), 4.03 (s,
1H), 3.48 (d, J=11.0 Hz, 1H), 3.39 (d, J=11.0 Hz, 1H), 0.93 (s, 3H),
0.92 ppm (s, 3H); 13C NMR (125 MHz, CD3OD): d=174.4 (2C), 133.8,
129.9, 77.0, 70.0, 40.7, 21.4, 20.6 ppm; HRMS (ESI TOF): calcd for
[7] Representative procedures highlighting the utility of imides in
synthesis include the reported construction of various 3-
hydroxypyrroles, 1,3,4-triazines, and multifarious enantioen-
riched b-substituted imides and esters: a) for 3-hydroxypyrroles,
see: W. Flitsch, K. Hampel, M. Hohenhorst, Tetrahedron Lett.
1987, 28, 4395; b) for 1,3,4-triazines, see, for example: N.
Jagerovic, L. Hernandez-Folgado, I. Alkorta, P. Goya, M.
Navarro, A. Serrano, F. Rodriguez de Fonseca, M. T. Dannert,
A. Alsasua, M. Suardiaz, D. Pascual, M. I. Martin, J. Med. Chem.
2004, 47, 2939; c) for b-substituted imides and esters, see: C. D.
Vanderwal, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 14724.
[8] a) H. B. Maruyama, Y. Suhara, J. Suzuki-Watanabe, Y. Mae-
shima, N. Shimizu, M. Ogura-Hamada, H. Fujimoto, K. Takano,
J. Antibiot. 1975, 28, 636; b) Y. Suhara, H. B. Maruyama, Y.
Kotoh, Y. Miyasaka, K. Yokose, H. Shirai, K. Takano, P. Quitt, P.
Lanz, J. Antibiot. 1975, 28, 648.
[9] K. Krohn, C. Franke, P. G. Jones, H.-J. Aust, S. Draeger, B.
Shultz, Liebigs Ann. Chem. 1992, 789.
[10] J. Thirkettle, E. Alvarez, H. Boyd, M. Brown, E. Diez, J. Hueso,
S. Elson, M. Fulston, C. Gershater, M. L. Morata, P. Perez, S.
Ready, J. M. Sanchez-Pulles, R. Sheridan, A. Stefanska, S. Warr,
J. Antibiot. 2000, 53, 664.
[11] a) For the first report of a RuO4-based oxidation of an acyclic
amide, see: L. M. Berkowitz, P. N. Rylander, J. Am. Chem. Soc.
1958, 80, 6682; b) for the scope of the reaction with RuO4, see:
K. Tanaka, S. Yoshifuji, Y. Nitta, Chem. Pharm. Bull. 1987, 35,
364.
[12] V. S. Martin, J. M. Palazon, C. M. Rodriguez in Encyclopedia of
Reagents for Organic Synthesis (Ed.: L. A. Paquette), Wiley,
West Sussex, 1995, p. 4415.
À
C9H14NO5 [MÀH]À: 216.0877, found: 216.0875
64: Rf =0.68 (silica gel, EtOAc/hexanes 1:2); IR (film): n˜max =3449, 1570,
1488, 1449, 1262, 1199, 929, 765 cmÀ1; 1H NMR (500 MHz, CDCl3):
d=7.43 (dd, J=8.5, 7.4 Hz, 2H), 7.36 (t, J=8.5 Hz, 1H), 7.27–7.24 (m,
1H), 7.17 (dd, J=8.1, 0.8 Hz, 1H), 7.11–7.09 (m, 2H), 6.73 ppm (dd,
J=8.8, 0.8 Hz, 1H); 13C NMR (125 MHz, CDCl3): d=161.5, 154.7,
138.3, 134.2, 130.4, 125.7, 123.5, 120.5, 114.6, 113.3 ppm; HRMS
(ESI TOF): calcd for C13H8ClNOH+ [M+H]+: 230.0367, found: 230.0359
aqueous Na2S2O3 (2 mL) and stirred vigorously until the solution
became clear. The mixture was poured into Et2O (15 mL) and the
ethereal phase was washed twice with 10% aq. Na2S2O3/aq. NaHCO3
(1:1 mixture, 15 mL) and brine (15 mL), and then dried (MgSO4).
Removal of the solvent in vacuo afforded the imide, often pure
1
enough (by NMR spectroscopic analysis) to forgo chromatography.
Generation of N-acyl vinylogous carbamates and ureas: In a sealed
tube the amide (0.1–0.3mmol) was dissolved in fluorobenzene (0.1 m)
and DMP (5.0 equiv) was added. The mixture was heated at 80–858C
until full consumption of starting material was noted (monitored by
TLC analysis). The reaction mixture was then quenched and purified
in the same manner as for the preparation of imides described above.
General procedure (amines): The amine (0.1–0.4 mmol) was
dissolved in a small amount of CH2Cl2 and added dropwise over a
period of 5–10 min to a homogeneous mixture of DMP (2.0 equiv) in
CH2Cl2 to form a 0.15m solution with respect to the amine. The
reaction mixture was stirred at 258C until the starting material was
consumed (as observed by TLC analysis), at which time the reaction
[13] a) For the role of IBX as a single-electron-transfer oxidant in
benzylic oxidations, see: K. C. Nicolaou, P. S. Baran, Y.-L.
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 5992 –5997