(iii) 1-Trimethylsilylmethyl-4,5-diphenyl-1H-imidazole (21a)
(Table 1, entry, 5)
cis S᎐C group going through the structure 4cc to give 5. A
disrotatory direction goes through 4ccЈ to give ultimately 6S by
᎐
attack on the C᎐S group by the terminal CH . In these two
᎐
2
A solution of 3,4-diphenyl-1,2,5-thiadiazole (0.3 g, 1.26 mmol)
and trimethylsilylmethyl trifluoromethanesulfonate (0.63 cm3,
3.15 mmol) was stirred at 80 ЊC for 12 h and cooled to give a
residue containing the salt 10a, δH (CDCl3) 0.2 (s, 9H, SiMe3),
4.0 (s, 2H, CH2-N), 7.0–7.3 (m, 10H, Ph); δC (CDCl3) Ϫ1.3
(SiMe3), 39.0 (N-CH2), 160.8 (C-3), 159.7 (C-4), 118.1, 121.2
(C-1Ј of 3-C-Ph and 4-C-Ph), 127.9, 128.6 (C-2Ј of 3-C-Ph and
4-C-Ph), 130.6, 129.4 (C-3Ј of 3-C-Ph and 4-C-Ph), 133.4, 131.1
(C-4Ј of 3-C-Ph and 4-C-Ph); δN (in CDCl3 from CH3NO2)
Ϫ60.6 and Ϫ134.4, N-5 and N-2. This residue in dichloro-
methane (5 cm3) was treated with CsF and stirred for 12 h at
ambient temperature placed on a Merck silica gel column (70–
230 mesh ASTM) and when eluted with gradient mixtures of
dichloromethane–diethyl ether (1:0–1:1 v/v) gave the title
compound 21a, mp 120–121 ЊC (hexane) (24%) (Found: C,
74.2; H, 7.4; N, 9.0. C19H22N2Si requires C, 74.5; H, 7.2; N,
9.2%); δH (CDCl3) 0.0 (9H, s, SiMe3), 3.40 (2H, s, CH2), 7.56
(1H, s, H-2), 7.13–7.50 (10H, m, Ph); δC (CDCl3) Ϫ2.4 (SiMe3),
36.1 (CH2), 136.1 (C-2), 134.6 (C-5), 137.7 (C-4), 126.1, 126.4,
128.0, 128.5, 128.9, 130.9, 131.1 (aromatic CH), one signal not
observed due to overlap in the 126–131 ppm region; δN (CDCl3
from CH3NO2) Ϫ129.4 and Ϫ170.2, N-2 and N-1 respectively.
Remaining resinous decomposition products were washed
from the column with methanol as well as traces of 4,5-
diphenylimidazole.
cases the S᎐C group remains cis. In the reaction of 1,2,5-
᎐
thiadiazolo case, for the intermediate 16 the conrotatory
rotation of the N–CH2 group also leads to a six membered ring
19. However, rotation of the N᎐S group may also occur before a
᎐
disrotary rotation, forming a nearly planar tt structure. Sub-
sequent rotation of the N–CH2 group then ultimately gives rise
to the structure 20 via a trans, cis intermediate.
References
1 R. N. Butler, P. D. McDonald, P. McArdle and D. Cunningham,
J. Chem. Soc., Perkin Trans. 1, 1994, 1653.
2 R. N. Butler, K. M. Daly, J. M. McMahon and L. A. Burke,
J. Chem. Soc., Perkin Trans. 1, 1995, 1083.
3 R. N. Butler, P. D. McDonald, P. McArdle and D. Cunningham,
J. Chem. Soc., Perkin Trans. 1, 1996, 1617.
4 E. Vedejs, S. Larsen and F. G. West, J. Org. Chem., 1985, 50, 2170.
5 R. C. F. Jones, J. R. Nichols and M. T. Cox, Tetrahedron Lett., 1990,
31, 2333.
6 R. K. Smalley, Comprehensive Heterocyclic Chemistry II, series eds.
A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Pergamon, Oxford,
1996, vol. 6 (vol. ed., A. J. Boulton), pp. 681–694.
7 C. W. Rees, J. Heterocycl. Chem., 1996, 33, 1419 and references
therein.
8 D. Clarke, K. Emayan and C. W. Rees, J. Chem. Soc., Perkin
Trans. 1, 1998, 77; K. Emayan, R. F. English, P. A. Koutentis and
C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1997, 3345.
9 R. Huisgen and J. Rapp, Heterocycles, 1997, 45, 507; R. Huisgen,
J. Rapp and H. Huber, Liebigs Ann./Recl., 1997, 1517; R. Huisgen,
G. Mlosten and K. Polborn, J. Org. Chem., 1996, 61, 6570.
10 For reviews see C. R. Ganellin, in Medicinal Chemistry, ed., S. M.
Roberts and B. J. Price, Academic Press, London, 1985, p. 93;
G. J. Durant, Chem. Soc. Rev., 1985, 14, 375.
11 R. N. Butler, M. O. Cloonan, P. McArdle and D. Cunningham,
J. Chem. Soc., Perkin Trans. 1, 1998, 1295.
12 R. N. Butler, E. C. McKenna, J. M. McMahon, K. M. Daly,
D. Cunningham and P. McArdle J. Chem. Soc., Perkin Trans. 1,
1997, 2919.
(iv) 2,4-Diphenyl-1H-imidazole (6a) (Table 1, entry 9)
A solution of 4,6-diphenyl-2H-1,3,5-thiadiazine 5a (0.19 g,
0.753 mmol) in ethanol (5 cm3) was treated with sodium ethox-
ide (0.09 g, 1.3 mmol), heated under reflux for 3 h, cooled and
evaporated under reduced pressure and the residue in dichloro-
methane (2 cm3) was placed on a silica gel-60 column (70–230
mesh ASTM). Elution with diethyl ether gave 6a, mp 168 (lit.,22
168 ЊC) (from CH2Cl2–hexane) (0.11 g, 69%) (Found: C, 81.5;
H, 5.2; N, 12.4. C15H12N2 requires C, 81.7; H, 5.5; N, 12.7%); δH
(CDCl3) 7.3–7.7 (11H, m, Ar), 8.5 (1H, br s, NH).
13 G. L’Abbé, P. Delberke, L. Bastin, W. Dehaen and S. Toppet,
J. Heterocycl. Chem., 1993, 30, 301.
14 For comments on the concept and term “heteroelectrocyclisation”
cf. W. M. F. Fabian, V. A. Bakulev and C. O. Kappe, J. Org. Chem.,
1998, 63, 5801.
Calculations
15 A. Rolfs, P. G. Jones and J. Liebscher, J. Chem. Soc., Perkin Trans. 1,
1996, 2339; A. Rolfs and J. Liebscher, Angew. Chem., Int. Ed. Engl.,
1993, 32, 712.
All calculations were carried out using the Gaussian94 series of
programs.17 The HF//6-31G* theoretical level was chosen for
all structures. The nature of the stationary points on the poten-
tial energy surfaces were all identified using analytical second
derivatives to compute vibrational frequencies. The normal
mode of the single negative frequency obtained for transition
state structures was inspected to insure that it connects the
reactant and product of interest.
In order to keep track of the possible isomers a cis–trans
notation was given for the rotations about the single C–N
bonds. Upon opening from the five-membered thiadiazolo ring,
single bonds are formed at the 2–3 and 4–5 positions of the
resulting open chains and the rotational isomers are given a
cis or trans designation in this respective order. Thus the first
isomer to be formed upon ring opening is designated ct. The
trans positions give a nearly planar component whereas the cis
positions give a dihedral angle of ca. 60Њ about the appropriate
single C–N bond.
16 A. Rolfs and J. Liebscher, J. Org. Chem., 1997, 62, 3480.
17 GAUSSIAN94 (Revision E.2), M. J. Frisch, G. W. Trucks, H. B.
Schegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman,
T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Ragavachari,
M. A. Al-Laham, V. G. Kakrzewski, J. V. Ortiz, J. B. Foresman,
J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. W. Wong,
J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox,
J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon,
C. Gonzalez and J. A. Pople, GAUSSIAN, Inc., Pittsburgh, PA,
1997.
18 A. O. Fitton and R. K. Smalley, in Practical Heterocyclic Chemistry,
Academic Press, London, 1968, p. 21.
19 M. W. Cronyn and T. W. Nakagawa, J. Am. Chem. Soc., 1952, 74,
3693.
20 A. C. Cope, D. S. Smith and R. J. Cotter, Org. Synth., 1963, Coll.
Vol. IV, 377.
21 M. Villena-Blanco and W. M. Jolly, Inorg. Synth., 1967, 9, 98;
M. Tashiro, J. Heterocycl. Chem., 1979, 16, 1009.
22 P. G. Haines and E. C. Wagner, J. Am. Chem. Soc., 1949, 71, 2793.
Thus for example, in the reaction 3 to 4 the resulting isomer
of 4 is ct (i.e. C2–N3 cis and C4–N5 trans). The trans N᎐CH
᎐
2
group can then rotate in a conrotatory direction relative to the
Paper 9/01148J
1712
J. Chem. Soc., Perkin Trans. 1, 1999, 1709–1712