KODALI ET AL.
11
CONFLICT OF INTEREST
17. Miller FA, Wilkins CH. Infrared spectra and characteristic frequen-
cies of inorganic ions. Anal Chem. 1952;24:1253-1294.
18. Vogel AI. Elementary Practical Organic Chemistry (Part III):
Quantitative Oryanic Analysis. London: ELBS; 1971:735.
19. Dey BB, Raman MVS. Laboratory Manual of Organic Chem-
istry. Madras, India: Central Art Press; 1957:359 (revised by T. R.
Govinda Chary).
Authors declare that they do not have any conflict of interest.
ORCID
Chinna Rajanna Kamatala
20. (a) Feigl F, Anger V. Spot Tests in Inorganic Analysis. Amsterdam,
The Netherlands: Elsevier Science; 1998. (b) Parise Georghioua PE,
Ho CK. The chemistry of the chromotropic acid method for the anal-
ysis of formaldehyde. Can J Chem. 1989;67:871-876. (c) Dar A,
Shafique U, Anwar J, Waheed-uz-Zaman NaseerA. A simple spot
test quantification method to determine formaldehyde in aqueous
samples. J Saudi Chem Soc. 2016;20:S352-S356. (d) Fagnani E,
Melios CB, Pezza L, Pezza HR. Chromotropic acid-formaldehyde
reaction in strongly acidic media. The role of dissolved oxygen and
replacement of concentrated sulphuric acid. Talanta. 2003;60:171-
176.
REFERENCES
1. Wiberg KB. Oxidations in Organic Chemistry (Part-A). New York,
NY: Academic Press; 1965.
2. Benson D. Mechanisms of Oxidatioin by Metal ion. New York, NY:
Elsevier Scientific Publishing; 1976.
3. Fieser M, Fieser LF. Reacgents for Organic Synthesis. New York,
NY: Wiley-Interscience; 1977. Vol. 6.
4. Collins JC, Hess WW, Franck FJ. Dipyridine-chromium(VI)
oxide oxidation of alcohols in dichloromethane. Tetrahedron Lett.
1968;30:3363-3366.
21. Glasstone S, Laidler KJ, Eyring H. Theory of Rate Processes. New
York, NY: McGraw-Hill; 1961.
22. Espenson JH. Chemical Kinetics and Reaction Mechanisms. New
York, NY: McGraw-Hill; 2002:156-160.
5. Patel S, Mishra BK. Chromium(VI) oxidants having quaternary
ammonium ions: studies on synthetic applications and oxidation
kinetics. Tetrahedron. 2007;63:4367-4406.
23. Laidler KJ. Chemical Kinetics. Singapore: Pearson Education;
2004.
6. Karunakaran C, Karuthapandian S, Suresh S. Kinetic evidence of a
common mechanism in the oxidations of diethyl sulfide by dichro-
mates and halochromates of heterocyclic bases. Int J Chem Kinet.
2003;35:1-8.
24. (a) Zucker L, Hammett LP. The mechanism of the acid cat-
alyzed enolization of acetophenone derivatives. J Am Chem Soc.
1939;61:2785-2279. (b) Zucker L, Hammett LP. Kinetics of the iod-
ination of acetophenone in sulfuric and perchloric acid solutions. J
Am Chem Soc. 1939;61:2791-2798.
7. Karunakaran C, Suresh S. Similar substituent effects in the oxida-
tions of primary aliphatic alcohols with dichromates and halochro-
mates of heterocyclic bases. Int J Chem Kinet. 2005;37:5-9.
8. Corey EJ, Schmidt G. Useful procedures for the oxidation of alco-
hols involving pyridinium dichromate in aprotic media. Tetrahedron
Lett. 1979;20:399-402.
25. Paul MA, Long FA. H0 and related indicator acidity function. Chem
Rev. 1957;57:1-45.
26. Hammett LP. Physical Organic Chemistry. Tokyo, Japan: McGraw-
Hill, Kogakusa; 1970.
27. Rochester HS. Acidity Functions. New York, NY: Academic Press;
1970.
9. Kim S, Lhim DC. Imidazolium dichromate. A new reagent for the
oxidation of alcohols to carbonyl compounds. Bull Chem Soc Jpn.
1986;59:3297-3298.
28. (a) Bunnett JP. Kinetics of reactions in moderately concentrated
aqueous acids. I. classification of reactions. J Am Chem Soc.
1961;83:4956-4967. (b) Bunnett JP. Kinetics of reactions in mod-
erately concentrated aqueous acids. II. An empirical criterion of
mechanism. J Am Chem Soc. 1961;83:4968-4973. (c) Bunnett JP.
Kinetics of reactions in moderately concentrated aqueous acids. III.
Theory of w- and w*-values. J Am Chem Soc. 1961;83:4973-4977.
29. (a) Bunnett JP, Olsen FP. Linear free energy relationships con-
cerning equilibria in moderately concentrated mineral acids a sim-
ple method for estimating pK’s of weak bases. Can J Chem.
1966;44:1899-1916. (b) Bunnett JP, Olsen FP. Linear free energy
relationships concerning reaction rates in moderately concentrated
mineral acids. Can J Chem. 1966;44:1917-1931.
10. Lopez C, Gonzalez A, Cossio FP, Palomo C. 3-Carboxypyridinium
dichromate (NDC) and (4-carboxypyridinium dichromate (INDC).
Two new mild, stable, efficient, and inexpensive chromium(VI) oxi-
dation reagents. Synth Commun. 1985;15:1197-1211.
11. Balasubramanian R, Prathiba V.Quinolinium dichromate; a new
reagent for oxidation of alcohols. Indian J Chem B. 1986;25:326.
12. Aruna K, Manikyamba P. Linear free energy relationships in the
kinetic study of oxidation of phenols by quinolinium dichromate.
Int J Chem Kinet. 1997;29:437-443.
13. Raviraj MK, Dinesh CB, Nandibewoor ST. Oxidation of isoniazid
by quinolinium dichromate in an aqueous acid medium and kinetic
determination of isoniazid in pure and pharmaceutical formulations.
Anal Sci. 2004;20:743-747.
14. Medien HAA. Kinetics of oxidation of benzaldehydes by quinolin-
ium dichromate. Z Naturforsch b. 2003;58:1201-1205.
15. Sarma GC, Mahanti MK. Kinetics of oxidation of hydrocarbons by
quinolinium dichromate. J Phys Org Chem. 1991;4:217-224.
16. Narendar Reddy J, Giridhar S, Rajanna KC. Equilibrium and kinetic
studies of electron transfer reactions involving quinolinium dichro-
mate and aminoalcohols in aqueous acid media. Transition Met
Chem. 1996;21:105-111.
How to cite this article: Kodali SB, Jakku NR,
Kamatala CR, Yerraguntla RR. Kinetics and mecha-
nism of quinolinium dichromate mediated oxidation
of sugar alcohols in Bronsted acid media. Int J Chem