Enantioselective Organocatalysis of Strecker and Mannich Reactions
FULL PAPERS
1H, H-1), 4.55 (d, J=5.4 Hz, 2H, -CH-CH=CH2), 4.25 (dd,
J=4.6 Hz, J=12.2 Hz, 1H, H-6), 4.12 (dd, J=2.3 Hz, J=
12.2 Hz, 1H, H-6’), 3.81–3.72 (m, 1H, H-5), 3.58 (q, J=
9.8 Hz, 1H, H-2), 2.07, 2.01, 2.00 (s, 3H, CH3); 13C NMR
(50.3 MHz, CDCl3): d=170.6, 169.3 (COOCH3), 155.5
(OCONH), 132.3 (-CH2-CH=CH2), 118.0 (-CH2-CH=CH2),
88.7 (C-1), 74.0 (C-3), 72.0 (C-5), 68.2 (C-4), 66.1 (-CH2-
CH=CH2), 61.9 (C-6), 55.8 (C-2), 20.7, 20.6 (CH3); FD-MS:
m/z=415.9 (55%) [M+H]+, 414.9 (18%) [M]+, 372.8 (7%)
[MꢀN3]+.
other, glacial acetic acid (67 ml, 1.18 mmol) and tri-n-butyltin
hydride (0.15 mL, 543 mmol) are added and the mixture is
stirred at room temperature for 30 min. After evaporation
of the solvent, the residue is co-evaporated twice with tolu-
ene (10 mL each). The resulting oil is dissolved in isopropa-
nol (10 mL). To this solution MgSO4 (30 mg) and 5-tert-
butyl-3-pivaloyloxy-salicylaldehyde[8] (10) (152 mg, 543
mmol) are added. The suspension is heated to 808C for 2 h.
After filtering off the MgSO4 the solvent is removed under
vacuum. The resulting viscous oil is purified by column
chromatography on silica gel (CH2Cl2/EtOAc 4:1) affording
a yellow solid; yield: 366 mg (92%); Rf =0.29 (CH2Cl2/
EtOAc 4:1); a]D20: 19.1 (c 1, CH2Cl2); FT-IR (CH2Cl2 thin
film): n=3341 (br, n OH), 2986 (s, n CH), 1748 (s, n
OCOCH3), 1675 (br, n NHCONH), 1525 cmꢀ1 (br, n
NHCONH); 1H NMR (400 MHz, DMSO-d6): d=13.29 (s,
1H, OH), 8.52–8.49 (t+s, J=5.5 Hz, 2H, -CH=N-,
-NHCH2Ph), 7.17–7.13 (m, 5H, arom), 7.10 (d, J=2.8 Hz,
1H, arom), 6.96–6.94 (m, 2H, arom, -NH-CO-NH), 6.28 (d,
J=9.6 Hz, 1H, -NH-CO-NH), 5.48 (t, J=9.5 Hz, 1H, H-3),
5.36 (t, J=9.5 Hz, 1H, H-1), 4.92 (t, J=9.5 Hz, 1H, H-4),
4.27–4.20 (m, 2H, H-6, -NHCH2Ph), 4.11–4.10 (m, 1H, H-
N-[3,4,6-Tri-O-acetyl-2-N-(allyloxycarbonyl)-2-amino-
2-deoxy-b-d-glucopyranosyl]-carbamoyl-l-tert-
leucinyl-benzylamide (8)
l-tert-Leucine-N-benzylamide (7) (1.19 g, 5.42 mmol) is dis-
solved in dry DMF (30 mL) and the solution is saturated
with dry CO2. Under a constant stream of CO2 a solution of
3,4,6-tetra-O-acetyl-2-N-(allyloxycarbonyl)-2-amino-2-
deoxy-b-d-glucopyranosyl azide (6) (2.16 g, 5.21 mmol) in
dry DMF (5 mL) is added. After 2 min a solution of triphe-
nylphosphine (1.49 g, 5.68 mmol) in dry DMF (10 mL) is
slowly added while CO2 is constantly bubbled through the
solution. After 7 h the solvent is removed and the resulting
viscous oil is purified by column chromatography on silica
gel (CHCl3/acetone 10:1) affording a colorless, amorphous
solid; yield: 3.11 g (94%); Rf =0.29 (CHCl3/acetone 10:1);
5), 4.09–4.07 [m, 1H, -CHC
12.3 Hz, 1H, H-6’), 3.42 (t, J=9.5 Hz, 1H, H-2), 1.99, 1.97,
1.86 (s, 3H, -OCOCH3), 1.33 [s, 9H, -OCOC(CH3)3], 1.28 [s,
9H, -C(CH3)3], 0.83 [s, 9H, -CHC
(CH3)3]; 13C NMR (100.6
MHz, DMSO-d6): d=170.5, 169.9, 169.4, 169.1, 168.7
[-OCOCH3, -CONHCH2Ph, -OCOC(CH3)3], 157.1 (-CH=
N-), 156.0 (-NHCONH-), 141.7, 139.1, 137.7, 123.3, 122.2 [C-
(quart)], 128.0, 127.3, 126.6, 117.2 (C arom), 79.9 (C-1), 73.3
(C-3), 71.6 (C-5), 70.9 (C-2), 68.2 (C-4), 62.0 (C-6), 59.8[-
CHC(CH3)3], 42.0 (-NHCH2Ph), 38.4 [-OCOC(CH3)3], 34.5
(CH3)3], 26.4
A
AHCTREUNG
A
ACHTREUNG
1
a]2D0: 16.6 (c 2, CH2Cl2); H NMR (400 MHz, DMSO-d6): d=
AHCTREUNG
8.59 (t, J=5.8 Hz, 1H, -NH-CH2Ph), 7.44 (d, J=9.8 Hz, 1H,
-NH-COO-), 7.31–7.21 (m, 5H, arom), 6.88, 6.64 (d, J=
9.8 Hz, 1H, -NH-CO-NH-), 5.88–5.81 (m, 1H, -CH2-CH=
CH2), 5.20–5.11 (m, 2H, -CH2-CH=CH2), 5.05 (t, J=9.8 Hz,
1H, H-3), 4.96 (t, J=9.8 Hz, 1H, H-1), 4.80 (dd, J=9.8 Hz,
J=9.4 Hz, 1H, H-4), 4.51 (dd, J=5.0 Hz, J=14.1 Hz, 1H,
-CH2-CH=CH2), 4.40 (dd, J=4.9 Hz, J=14.1 Hz, 1H, -CH2-
CH=CH2), 4.32 (dd, J=6.2 Hz, J=14.9 Hz, 1H, H-6), 4.24–
4.13 (m, 2H, H-6’, -CH2-NHCH2Ph), 4.06 [d, J=9.7 Hz, 1H,
AHCTREUNG
ACHTREUNG
A
ACHTREUNG
[-CHC
G
(CH3)3], 26.7 [-OCOC
ACHTREUNG
[-CHC(CH3)3], 20.5, 20.4, 20.2 (-OCOCH3); FD-MS: m/z=
E
811.8 (91%) [M+H]+; anal. calcd. for C42H58O12N4: C 62.21,
H 7.21, N 6.91; found: C 61.85, H 7.23, N 6.72.
Typical Procedure for the Catalyzed Mannich
Reaction: 3-tert-Butyloxycarbonylamino-3-(2-
naphthyl)-isopropyl Propionate (23)
-CH
(m, 1H, H-5), 3.49 (q, J=9.9 Hz, 1H, H-2), 1.97, 1.94, 1.89
(s, 3H, -OCOCH3), 0.84 [s, 9H, -CHC
(CH3)3]; 13C NMR
(100.6 MHz, DMSO-d6): d=170.7, 169.9, 169.4, 169.2
(-OCOCH3, -CONH-), 156.3 (-NHCONH-), 155.8
(-NHCOO), 139.2 (C arom), 133.4 (-CH2-CH=CH2), 128.1,
127.4, 126.7 (C arom), 116.6 (-CH2-CH=CH2), 79.9 (C-1),
73.7 (C-3), 71.6 (C-5), 68.6 (C-4), 64.3 (-CH2-CH=CH2), 61.9
G
A solution of 21 (29 mg, 114 mmol) and catalyst 11 (e.g., 5
mol%: 4.6 mg, 5.7 mmol) in dry toluene (e.g., c=0.15
mol·Lꢀ1: 0.8 mL) is cooled to the desired reaction tempera-
ture. Over a period of 10 min, via syringe, 22 (e.g., 1.1
equivs., 27 mg, 125 mmol) is added, and the reaction mixture
is stirred for 48 h at the respective reaction temperature.
After evaporation of the solvent, the residue is purified by
column chromatography on silica gel (EtOAc/cyclohexane,
1:10); Rf =0.23 (EtOAc/cyclohexane 1:10) to give 23 (see
Table 3).
(C-6), 59.9 [-CHC
34.4 [-CHC
C
G
5-tert-Butyl-3-pivaloyloxy-salicylaldehyde (10)
The product was obtained following a known procedure.[8]
Acknowledgements
N-[3,4,6-Tri-O-acetyl-2-N-(3’-tert-butyl-2’-hydroxy-5’-
pivaloyloxybenzylidene)-2-amino-2-deoxy-b-d-
glucopyranosyl]-carbamoyl-l-tert-leucinyl-
benzylamide (11)
This work was supported by the Deutsche Forschungsgemein-
schaft and the Fonds der Chemischen Industrie.
To a solution of (8) (313 mg, 493 mmol) in CH2Cl2 (10 mL)
Pd(PPh3)4 (11 mg, 9.4 mmol) is added. Quickly one after the
A
Adv. Synth. Catal. 2007, 349, 417 – 424
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
423