1870
D. Colombo et al. / Bioorg. Med. Chem. 7 (1999) 1867±1871
1
Table 2. Signi®cant H NMR signals of compounds 3a, 4a, 6 and 9
Chemical shifts, ꢀb
H-10
H-60a
H-60b
H-2
H-1a
H-1b
H-3a
H-3b
3a
3b
3c
3d
5.11
5.12
5.12
5.13
5.13
5.15
5.15
5.15
4.44
4.44
4.44
4.45
4.78
4.78
4.78
4.78
4.70
4.71
4.73
4.73
4.36
4.36
4.36
4.37
4.25
4.24
4.24
4.24
4.29
4.29
4.29
4.29
4.96
4.98
4.98
4.99
4.50
4.51
4.52
4.51
4.42
4.42
4.42
4.43
4.35
4.35
4.34
4.34
4.39
4.38
4.38
4.38
4.46
4.48
4.50
4.50
4.05
4.05
4.05
4.05
3.90
3.90
3.90
3.89
4.11
4.15
4.15
Ð
Ð
Ð
Ð
4.26
4.24
4.25
4.25
4.14
4a
4.07±4.15
4.08±4.16
4.09±4.17
4.09±4.17
3.50
3.50
3.50
3.49
4.60
4.62
4.63
4.64
4.66
4.69
4.70
4.70
4bc
4cd
4d
6a
6b
6c
Ð
Ð
Ð
Ð
3.64
3.66
3.65
3.65
6d
9ae
9be
9ce
9de
3.62
3.62
3.61
3.61
3.68
3.67
3.67
3.67
4.09
4.08
4.08
4.08
4.27
4.28
4.27
4.27
a
Pyridine-d5 solutions.
When measurable, the coupling constants in Hz results: J1 ,2 =8.0, J6 a,6 b=12.0; 3: J6 b,5 =0.5, J6 a,5 =5.5; 4: J3a,3b=12.0, J6 b,5 =2.0,
b
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
J6 a,5 =5.0, J3b,2=5.5, J3a,2=5.5; 6: J6 b,5 =4.0, J6 a,5 =2.0; 9: J1a,1b=12.0, J3a,3b=12.0, J6 b,5 =5.0, J6 a,5 =2.0, J1b,2=3.5,
J1a,2=6.0, J3b,2=5.0, J3a,2=6.0.
c
Signi®cant 1H NMR signals for the 1-O-isomer 2b: 4.66 (dd, 1H, J1a,1b=12.0 Hz, J1a,2=4.5 Hz, H-1a), 4.69 (dd, 1H, J1b,2=5.5 Hz, H-1b), 5.10
0
0
0
(d, 1H, J1 ,2 =8.0 Hz, H-1 ).
d
Signi®cant 1H NMR signals for the 1-O-isomer 2c: 4.67 (dd, 1H, J1a,1b=12.0 Hz, J1a,2=4.5 Hz, H-1a), 4.70 (dd, 1H, J1b,2=5.5 Hz, H-1b), 5.10
0
0
0
(d, 1H, J1 ,2 =8.0 Hz, H-1 ).
e
0
0
Signi®cant 1H0 NMR signals for the 1-O-isomers 09; a: 4.71 (d, 1H, J1 ,2 =8.0 Hz, H-1 ), b: 4.71 (d, 1H, J1 ,2 =8.0 Hz, H-1 ), c: 4.71 (d, 1H,
0
0
0
0
0
J1 ,2 =8.0 Hz, H-1 ), d: 4.71 (d, 1H J1 ,2 =8.0 Hz, H-1 ).
0
0
0
atmosphere for 1 h and then ®ltered through a Celite
bed aording quantitatively the debenzylated com-
pounds 3. For the H NMR signals see Table 2.
yielded pure 1,3-di-O-benzyl-2-O-(2,3,4,6-tetra-O-chloro-
acetyl-b-d-glucopyranosyl)-sn-glycerol (7), (90% yield):
1
1
oil; [a]d +0.6 (chloroform); H NMR: d 3.46±3.65 (m,
0
0
4H, H2-1 and H2-3), 3.70 (ddd, 1H, J5 ,4 =10.0,
0
J5 ,6 a=3.0, J5 ,6 b=4.0 Hz, H-50), 3.82, 3.96 and 4.04
(3s, 6H, 3 CH2Cl), 3.97±4.00 (m, 2H, CH2Cl), 4.02 (m,
0
0
0
2-O-(6-O-Butanoyl-ꢀ-D-glucopyranosyl)-sn-glycerol (3a).
(98% yield), mp 76±78ꢀC (ethanol), [a]d 4.0, MS m/z
342 [M+NH4]+.
1H, H-2), 4.23 (dd, 1H, J6 a,6 b=12.0 Hz, H-60a), 4.27
(dd, 1H, H-60b), 4.46±4.52 (m, 4H, 2 CH2Ph), 4.84 (d,
0
0
0
0
0
0
0
2-O-(6-O-Hexanoyl-ꢀ-D-glucopyranosyl)-sn-glycerol (3b).
(97% yield), mp 103±105ꢀC (ethanol), [a]d 8.0, MS
m/z 370 [M+NH4]+.
1H, J1 ,2 =8.0 Hz, H-1 ), 5.03 (dd, 1H, J2 ,3 =10.0 Hz,
0
H-20), 5.13 (dd, 1H, J4 ,3 =10.0 Hz, H-4 ), 5.29 (dd,
1H, H-30), 7.20±7.35 (m, 10H, Ph); MS m/z 758
[M+NH4]+.
0
0
2-O-(6-O-Octanoyl-ꢀ-D-glucopyranosyl)-sn-glycerol (3c).
(98% yield), mp 109±111ꢀC (ethanol), [a]d 6.0, MS
m/z 398 [M+NH4]+.
2-O-(2,3,4,6-Tetra-O-chloroacetyl-ꢀ-D-glucopyranosyl)-
sn-glycerol (8). Compound 7 (3.00 g, 4.05 mmol) was
submitted to hydrogenolysis as described above aord-
ing 2-O-(2,3,4,6-tetra-O-chloroacetyl-b-d-glucopyrano-
syl)-sn-glycerol (8), (88% yield): oil; [a]d +2.4
2-O-(6-O-Decanoyl-ꢀ-D-glucopyranosyl)-sn-glycerol (3d).
(97% yield), mp 113±114ꢀC (ethanol), [a]d 4.0, MS
m/z 426 [M+NH4]+.
1
(chloroform); H NMR: d 3.58±3.68 (m, 4H, H2-1 and
0
0
H2-3), 3.78 (m, 1H, H-2), 3.88 (ddd, 1H, J5 ,4 =10.0,
0
J5 ,6 a=6.0, J5 ,6 b=3.0 Hz, H-50), 3.97 and 4.12 (2s, 4H,
2 CH2Cl), 3.99±4.05 (m, 4H, 2 CH2Cl), 4.30 (dd, 1H,
0
0
0
General procedure for the chemoenzymatic synthesis of
monoesters 4
J6 a,6 b=12.0 Hz, H-60a), 4.37 (dd, 1H, J6 b), 4.77 (d,
0
0
0
0
0
0
0
0
1,3-Di-O-benzyl-2-O-(2,3,4,6-tetra-O-chloroacetyl-ꢀ-D-
glucopyranosyl)-sn-glycerol (7). Chloroacetic anhydride
(3.92 g, 22.92 mmol) was added at 0ꢀC to a solution of 5
(2.00 g, 4.61 mmol) in dichloromethane (40 mL) and
pyridine (5.4 mL). After 15 min the reaction mixture
was diluted with dichloromethane (160 mL) and washed
with 1 M HCl (80 mL), water (80 mL), 10% NaHCO3
(80 mL), and two volumes of water (80 mL). Organic
layer was dried over Na2SO4 and the solvent removed
under reduced pressure. Flash chromatography (ethyl
acetate:petroleum ether, 30:70, v/v) of the crude product
1H, J1 ,2 =8.0 Hz, H-1 ), 5.10 (dd, 1H,0 J2 ,3 =10.0 Hz,
H-20), 5.13 (dd, 1H, J4 ,3 =10.0 Hz, H-4 ), 5.36 (dd, 1H,
0
0
H-30).
3-O-Acyl-2-O-(2,3,4,6-tetra-O-chloroacetyl-ꢀ-D-gluco-
pyranosyl)-sn-glycerols (9). 2-O-(2,3,4,6-Tetra-O-chlor-
oacetyl-b-d-glucopyranosyl)-sn-glycerol (8) (0.50 g, 0.89
mmol) was dissolved in 10 mL of tetrahydrofuran; the
appropriate tri¯uoroethyl ester (2.67 mmol) and LCA
(1.50 g) were added in the order and the suspension was
stirred at 45ꢀC for 8 h. The reaction was treated as