C. Kibayashi, S. Aoyagi / Journal of Organometallic Chemistry 653 (2002) 229–233
233
The recent report by Smith et al. [15] demonstrated in
the natural product synthesis the efficiency of a dialkylz-
inc derivative for the alkyl–vinyl coupling based on the
modified Negishi cross-coupling reaction. In view of this
protocol, we considered employing the dialkylzinc in-
stead of the alkylzinc chloride for the cross-coupling
reaction of the vinyl iodide (36). Hence, the dialkylzinc
(38) was prepared by addition of one equivalent of zinc
chloride to a solution of the iodide (15) at −90 °C
followed by addition of three equivalent of t-BuLi. The
vinyl iodide (35) was added to the resulting mixture along
with the palladium catalyst, affording the cross-coupled
product 37 in 50% yield (Scheme 7).
employing novel, complex homoallylzinc molecules
derived from the (Z)-iodoalkylideneindolizidine which
served as an advanced common synthetic intermediate,
leading to an efficient approach to the asymmetric
synthesis of (+)-pumiliotoxins A and B.
References
[1] (a) J.W. Daly, T.F. Spande, in: S.W. Pelletier (Ed.), Alkaloids:
Chemical and Biological Perspectives, vol. 4, Wiley, New York,
1986, pp. 1–274;
(b) J.W. Daly, H.M. Garraffo, T.F. Spande, in: G.A. Cordell (Ed.),
The Alkaloids, vol. 43, Academic Press, San Diego, 1993, pp.
185–288;
With these results, we were poised to incorporate the
coupling reaction utilizing the dialkylzinc for the synthe-
sis of pumiliotoxin B (2). Accordingly, we subjected the
homoallyl iodide (31) to the same conditions (one equiv-
alent ZnCl2 then three equivalent t-BuLi) used in the
preparation of the dialkylzinc (38), leading to the in situ
formation of the homoallyl-tert-butyl zinc intermediate
39. Subsequent treatment with the vinyl iodide (36) in the
presence of the palladium(0) catalyst resulted in the
homoallyl–vinyl coupling product 40, which was depro-
tected using triethylamine trihydrofluoride and then HCl
to provide (+)-pumiliotoxin B (2) (Scheme 9).
(c) J.W. Daly, in: G.A. Cordell (Ed.), The Alkaloids, vol. 50,
Academic Press, San Diego, 1998, pp. 141–169;
(d) J.W. Daly, H.M. Garraffo, T.F. Spande, in: S.W. Pelletier (Ed.),
Alkaloids: Chemical and Biological Perspectives, vol. 13, Perga-
mon Press, Amsterdam, 1999, pp. 1–161.
[2] J.W. Daly, C.W. Myers, Science (Washington, DC) 156 (1967) 970.
[3] F. Gusovsky, W.L. Padgett, C.R. Creveling, J.W. Daly, Mol.
Pharmacol. 42 (1992) 1104, and references cited therein.
[4] (a) L.E. Overman, K.L. Bell, F. Ito, J. Am. Chem. Soc. 106 (1984)
4192;
(b) L.E. Overman, N.-H. tin, J. Org. Chem. 50 (1985) 3669;
(c) L.E. Overman, M.J. Sharp, Tetrahedron Lett. 29 (1988) 901;
(d) N.-H. Lin, L.E. Overman, M.H. Rabinowitz, L.A. Robinson,
M.J. Sharp, J. Zablocki, J. Am. Chem. Soc. 118 (1996) 9062.
[5] (a) D.N.A. Fox, D. Lathbury, M.F. Mahon, K.C. Molloy, T.
Gallagher, J. Am. Chem. Soc. 113 (1991) 2652. For the preparation
of the lactam intermediates in the Gallagher synthesis [5a] of
pumiliotoxin 251D.
5. Conclusion
see: (b) T. Honda, M. Hoshi, M. Tsubuki, Heterocycles 34 (1992)
1515.
(c) T. Honda, M. Hoshi, K. Kanai, M. Tsubuki, J. Chem. Soc.
Perkin Trans. 1 (1994) 2091.
(d) J. Cossy, M. Cases, D. Gomez-Pardo, Synlett(1996) 909.
(e) J. Cossy, M. Cases, D. Gomez-Pardo, Bull. Soc. Chim. Fr. 134
(1997) 141.
The new strategy developed herein has served to
demonstrate the potential of the homoallyl–vinyl cou-
pling protocol for a general entry to the convergent
asymmetric synthesis of the pumiliotoxin alkaloids. It
relies on a palladium(0)-based cross-coupling reaction
(f) A.G.M. Barren, F. Damiani, J. Org. Chem. 64 (1999) 1410.
[6] A part of this work has been published: S. Hirashima, S. Aoyagi,
C. Kibayashi, J. Am.Chem. Soc. 121 (1999) 9873.
[7] (a) E. Negishi, L.F. Valente, M. Kobayashi, J. Am. Chem. Soc.
102 (1980) 3298;
(b) M. Kobayashi, E. Negishi, J. Org. Chem. 45 (1980) 5223.
[8] E. Negishi, Acc. Chem. Res. 15 (1982) 340.
[9] K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 108 (1986)
7408.
[10] I. Fleming, N.K. Terrett, J. Organomet. Chem. 264 (1984) 99.
[11] For the TiCl4-mediated addition of allenylsilanes to carbonyl
compounds, see: (a) R.L. Danheiser, D.J. Carini, J. Org. Chem.
45 (1980) 3925.
(b) R.L. Danheiser, D.J. Carini, C.A. Kwasigroch, J. Org. Chem.
51 (1986) 3870.
[12] S.W. Goldstein, L.E. Overman, M.H. Rabinowitz, J. Org. Chem.
57 (1992) 1179.
[13] (a) A. Schoenberg, I. Bartoletti, R.F. Heck, J. Org. Chem. 39 (1974)
3318;
(b) A. Schoenberg, R.F. Heck, J. Org. Chem. 39 (1974) 3327.
[14] K.A. Scheidt, H. Chen, B.C. Follows, S.R. Chemler, D.S. Coffey,
W.R. Roush, J. Org. Chem. 63 (1998) 6436.
[15] (a) A.B. Smith III, Y. Qiu, D.R. Jones, K. Kobayashi, J. Am.
Chem. Soc. 117 (1995) 12011;
(b) A.B. Smith III, T.J. Beauchamp, M.J. LaMarche, M.D.
Kaufman, Y. Qiu, H. Arimoto, D.R. Jones, K. Kobayashi, J. Am.
Chem. Soc. 122 (2000) 8654.
Scheme 9.