Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
1k→1j→1i (70%(-)→28%(-)→70%(+), entries 22, 21, 20 in Table
2). The long alkyl substituent is perferred for (+)-selectivity in BV
oxidation reactions catalyzed by these mutants. Except for 4-n-
propyl substituted cyclohexanone (1i) (Table 2, entry 9), other
ketones with short alkyl substitutents at C-4 position(1h, 1j, and
1k), or 2-methyl cyclohexanone (3) and 3-methyl
cyclohexanone (6) (Table S7, ESI†) can not be transformed with
reversed selectivity, which outlines the limitation of these
mutants discussed herein. This is probably because of the
mobility of the smaller substrate in the reshaped active site of
these mutants. For example, in the case of the “bottom” switch
(Fig. 1C, Table 2), the extra space vacated by mutations of L435A
or L435G is favorable for the orientation of the axial substituent,
especially for long axial-substituent which may bind more
tightly with the reshaped pocket to match the axial space
created by the mutation. However, the short substituent of the
substrate (1j, 1k) may prefer to staying in equatorial rather than
in axialdue to lack of potential binding with the enlarged pocket
along the axial, such that (S)-selectivity would be still preserved.
In conclusion, starting from WT CHMOAcineto, we found a “top”
or “bottom” switch at position 432 and 435, which can reverse
the enantiopreference toward bulky substituted-ketones
sandwiched between the two switches. By single mutation at
either position 432 or 435, complete reversal of
enantiopreference has been achieved. The rational approach
combining in silico and experimental studies supersedes the
random selection of target residues for mutagenesis, and
therefore has drastically reduced the screening effort.
Sequences alignment based on the 94 BVMO sequences (Fig. S7,
ESI†) implied these two switch residues are highly conserved in
many BVMO, thus the finding herein will provide a valuable
guidance for facile engineering other BVMO with reversed
enantiopreference for specific substrates.
Schmidt, Y. Wang, S. Younes and W. ZhDaOngI:,1A0.n10g3e9w/C. 8CChCe0m9.9I5n1tK.
Ed., 2018, 57, 9238-9261; (c) Z. G. Zhang, L. P. Parra and M. T.
Reetz, Chem. Eur. J., 2012, 18, 10160-10172; (d) H. Leisch, K.
Morley and P. C. K. Lau, Chem. Rev., 2011, 111, 4165-4222; (e)
D. E. Torres Pazmiño, H. M. Dudek and M. W. Fraaije, Curr.
Opin. Chem. Biol., 2010, 14, 138-144; (f) K. Balke, M. Kadow,
H. Mallin, S. Sass and U. T. Bornscheuer, Org. Biomol. Chem.,
2012, 10, 6249-6265.
5
C. T. Walsh and Y. C. Chen, Angew. Chem., Int. Ed., 1988, 27,
333-343.
(a) S. Schmidt, M. Genz, K. Balke and U. T. Bornscheuer, J.
Biotechnol., 2015, 214, 199-211; (b) H. L. van Beek, H. J. Wijma,
L. Fromont, D. B. Janssen and M. W. Fraaije, FEBS Open Bio.,
2014, 4, 168-174; (c) D. J. Opperman and M. T. Reetz,
ChemBioChem, 2010, 11, 2589-2596.
(a) K. Balke, S. Schmidt, M. Genz and U. T. Bornscheuer, ACS
Chem. Biol., 2016, 11, 38-43; (b) H. L. van Beek, E. Romero and
M. W. Fraaije, ACS Chem. Biol., 2017, 12, 291-299; (c) K. Balke,
M. Bäumgen and U. T. Bornscheuer, ChemBioChem, 2017, 18,
1627-1638.
(a) M. T. Reetz, B. Brunner, T. Schneider, F. Schulz, C. M.
Clouthier and M. M. Kayser, Angew. Chem., Int. Ed., 2004, 43,
4075–4078; (b) M. D. Mihovilovic, F. Rudroff, A. Winninger, T.
Schneider, F. Schulz and M. T. Reetz, Org. Lett., 2006, 8, 1221-
1224; (c) Z. G. Zhang, G. D. Roiban, J. P. Acevedo, I. Polyak and
M. T. Reetz, Adv. Synth. Catal., 2013, 355, 99-106.
(a) M. T. Reetz, F. Daligault, B. Brunner, H. Hinrichs and A.
Deege, Angew. Chem., Int. Ed., 2004, 43, 4078-4081; (b) A.
Beier, S. Bordewick, M. Genz, S. Schmidt, T.v an den Bergh, C.
Peters, H. J. Joosten and U. T. Bornscheuer, ChemBioChem,
2016, 17, 2312-2315.
6
7
8
9
10 (a) C. M. Clouthier, M. M. Kayser and M. T. Reetz, J. Org.
Chem., 2006, 71, 8431–8437; (b) G. Li, M. J. L. J. Fürst, H. R.
Mansouri, A. K. Ressmann, A. Ilie, F. Rudroff, M. D. Mihovilovic,
M. W. Fraaije and M. T. Reetz, Org. Biomol. Chem., 2017, 15,
9824-9829.
11 Recent reviews of directed evolution: (a) N. J. Turner, Nat.
Chem. Biol., 2009, 5, 567-573; (b) C. Jäckel and D. Hilvert, Curr.
Opin. Biotechnol., 2010, 21, 753-759; (c) M. T. Reetz, Angew.
Chem., Int. Ed., 2011, 50, 138-174; (d) C. A. Denard, H. Ren and
H. Zhao, Curr. Opin. Chem. Biol., 2015, 25, 55-64; (e) H. Renata,
Z. J. Wang and F. H. Arnold, Angew. Chem., Int. Ed., 2015, 54,
3351-3367; (f) A. S. Bommarius, Annu. Rev. Chem. Biomol.
Eng., 2015, 6, 319-345; (g) S. C. Hammer, A. M. Knight and F.
H. Arnold, Curr. Opin. Green Sustain. Chem., 2017, 7, 23-30; (h)
A. Currin, N. Swainston, P. J. Day and D. B. Kell, Chem. Soc.
Rev., 2015, 44, 1172-1239; (i) J. Wang, G. Li and M. T. Reetz,
Chem. Commun., 2017, 53, 3916-3928; (j) C. Zeymer, D.
Hilvert, Annu. Rev. Biochem., 2018, 87, 131-157;
This work was supported by National Natural Science
Foundation of China (21574113, 21472169) and Zhejiang
Provincial Natural Science Foundation (LY19B020014). The
authors thank the computing resource from the high
performance computing cluster at Queen’s University Belfast.
Conflicts of interest
There are no conflicts to declare.
12 B. J. Yachnin, M. B. McEvoy, R. J. D. MacCuish, K. L. Morley, P.
C. K. Lau and A. M. Berghuis, ACS Chem. Biol., 2014, 9, 2843-
2851.
13 (a) L. C. Goncalves, D. Kracher, S. Milker, M. J. Fink, F. Rudroff,
R. Ludwig, A. S. Bommarius and M. D. Mihovilovic, Adv. Synth.
Catal., 2017, 359, 2121-2131; (b) M. J. Taschner, D. J. Black
and Q. Z. Chen, Tetrahedron: Asymmetry, 1993, 4, 1387-1390.
14 (a) I. Polyak, M. T. Reetz and W. Thiel, J. Am. Chem. Soc., 2012,
134, 2732-2741; (b) I. Polyak, M. T. Reetz and W. Thiel, J. Phys.
Chem. B, 2013, 117, 4993-5001.
Notes and references
1
D. d. S. Pisoni, J. S. da Costa, D. Gamba, C. L. Petzhold, A. C. d.
A. Borges, M. A. Ceschi, P. Lunardi and C. A. S. Goncalves, Eur.
J. Med. Chem., 2010, 45, 526-535.
2
(a) S. Shoda, H. Uyama, J. Kadokawa, S. Kimura and S.
Kobayashi, Chem. Rev., 2016, 116, 2307-2413; (b) R. Ligny,
M. M. Hanninen, S. M. Guillaume and J. F. Carpentier, Chem.
Commun., 2018, 54, 8024-8031.
(a) M. Uyanik and K. Ishihara, ACS Catal., 2013, 3, 513-520; (b)
D. K. Romney, S. M. Colvin and S. J. Miller, J. Am. Chem. Soc.,
2014, 136, 14019-14022; (c) P. P. Poudel, K. Arimitsu and K.
Yamamoto, Chem. Commun., 2016, 52, 4163-4166; (d) A.
Borissov, T. Q. Davies, S. R. Ellis, T. A. Fleming, M. S. W.
Richardson and D. J. Dixon, Chem. Soc. Rev., 2016, 45, 5474-
5540.
3
4
15 M. Nishio, Y. Umezawa, J. Fantini, M. S. Weiss and P.
Chakrabarti, Phys. Chem. Chem. Phys., 2014, 16, 12648-12683.
Select reviews about BVMOs, see: (a) K. Balke, A. Beier and U.
T. Bornscheuer, Biotechnol. Adv., 2018, 36, 247-263; (b) J.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins