Published on Web 10/30/2003
Multicomponent Linchpin Couplings. Reaction of Dithiane
Anions with Terminal Epoxides, Epichlorohydrin, and Vinyl
Epoxides: Efficient, Rapid, and Stereocontrolled Assembly of
Advanced Fragments for Complex Molecule Synthesis
Amos B. Smith, III,* Suresh M. Pitram, Armen M. Boldi, Matthew J. Gaunt,
Chris Sfouggatakis, and William H. Moser
Contribution from the Department of Chemistry, Monell Chemical Senses Center and Laboratory
for Research on the Structure of Matter, UniVersity of PennsylVania,
Philadelphia, PennsylVania 19104
Received July 29, 2003; E-mail: smithab@sas.upenn.edu
Abstract: The development, application, and advantages of a one-flask multicomponent dithiane linchpin
coupling protocol, over the more conventional stepwise addition of dithiane anions to electrophiles leading
to the rapid, efficient, and stereocontrolled assembly of highly functionalized intermediates for complex
molecule synthesis, are described. Competent electrophiles include terminal epoxides, epichlorohydrin,
and vinyl epoxides. High chemoselectivity can be achieved with epichlorohydrin and vinyl epoxides. For
vinyl epoxides, the steric nature of the dithiane anion is critical; sterically unencumbered dithiane anions
afford SN2 adducts, whereas encumbered anions lead primarily to SN2′ adducts. Mechanistic studies
demonstrate that the SN2′ process occurs via syn addition to the vinyl epoxide. Integration of the
multicomponent tactic with epichlorohydrin and vinyl epoxides permits the higher-order union of four and
five components.
Dithianes have evolved as invaluable tools in organic
synthesis, serving primarily as acyl anion equivalents for
constructing carbon-carbon bonds.1,2 The efficient, convergent
construction of partially or fully protected aldol linkages in a
stereocontrolled manner employing epoxides as the electrophile
is a particularly attractive feature of dithiane chemistry and, as
such, serves as an effective alternative to the classical aldol
reaction. Indeed, an early prominent aspect of several synthetic
ventures undertaken in this laboratory comprised the assembly
of subtargets of varying structural complexity exploiting
dithianes as linchpins.3 In these early examples, two building
blocks were joined, one a substituted lithiated 1,3-dithiane, the
other an electrophile such as an iodide, epoxide, aldehyde, or
ketone.
adducts, exploiting a solvent-controlled Brook rearrangement
(Scheme 1).4 The tactic proved efficient and was subsequently
Scheme 1
employed with considerable success in the construction of the
spiroketal segments of the potent antitumor spongistatins.5
Extension of this tactic to a five-component process achieved
in a single flask enabled the rapid assembly of the extended
1,3-polyol segment of the polyene macrolides, mycoticins A
and B.6
In 1997, we disclosed a three-component, one-flask linchpin
tactic employing 2-tert-(butyldimethylsilyl)-1,3-dithiane with
two different epoxide electrophiles to construct unsymmetrical
(1) (a) Corey, E. J.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1965, 4, 1075.
(b) Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231.
(2) Reviews: (a) Seebach, D. Synthesis 1969, 1, 17. (b) Grobel, B. T.; Seebach,
D. Synthesis 1977, 357. (c) Page, P. C. B.; Van Niel, M. B.; Prodger, J. C.
Tetrahedron 1989, 45, 7643. (d) Kolb, M. In Encyclopedia of Reagents
for Organic Synthesis; Paquette, L. A., Ed.; John Wiley & Sons: Chichester,
1995; Vol. 5, pp 2983. (e) Yus, M.; Najera, C.; Foubelo, F. Tetrahedron
2003, 59, 6147.
(3) (a) Smith, A. B., III; Condon, S. M.; McCauley, J. A. Acc. Chem. Res.
1998, 31, 35 and references therein. (b) Smith, A. B., III; Lodise, S. A.
Org. Lett. 1999, 1, 1249. (c) Smith, A. B., III; Doughty, V. A.; Lin, Q.;
Zhuang, L.; McBriar, M. D.; Boldi, A. M.; Moser, W. H.; Murase, N.;
Nakayama, K.; Sobukawa, M. Angew. Chem., Int. Ed. 2001, 40, 191. (d)
Smith, A. B., III; Lin, Q.; Doughty, V. A.; Zhuang, L.; McBriar, M. D.;
Kerns, J. K.; Brook, C. S.; Murase, N.; Nakayama, K. Angew. Chem., Int.
Ed. 2001, 40, 196. (e) Smith, A. B., III; Adams, C. M.; Lodise Barbosa, S.
A.; Degnan, A. P. J. Am. Chem. Soc. 2003, 125, 350.
More recently, we developed the chemoselective addition of
lithiated dithianes to various vinyl epoxides. Selectivity between
the SN2 and SN2′ addition manifolds could be easily controlled
(4) Smith, A. B., III; Boldi, A. M. J. Am. Chem. Soc. 1997, 119, 6925.
(5) (a) Smith, A. B., III; Zhuang, L.; Brook, C. S.; Boldi, A. M.; McBriar, M.
D.; Moser, W. H.; Murase, N.; Nakayama, K.; Verhoest, P. R.; Lin, Q.
Tetrahedron Lett. 1997, 38, 8667. (b) Smith, A. B., III; Zhuang, L.; Brook,
C. S.; Lin, Q.; Moser, W. H.; Trout, R. E. L.; Boldi, A. M. Tetrahedron
Lett. 1997, 38, 8671. (c) Smith, A. B., III; Lin, Q.; Nakayama, K.; Boldi,
A. M.; Brook, C. S.; McBriar, M. D.; Moser, W. H.; Sobukawa, M.; Zhuang,
L. Tetrahedron Lett. 1997, 38, 8675.
(6) Smith, A. B., III; Pitram, S. M. Org. Lett. 1999, 1, 2001.
9
10.1021/ja0376238 CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 14435-14445
14435