TPD-MS of silica-supported coumarins
benzothiazole. Rearrangements in the adsorbed state proceeded
through a ‘thiazole–thiazine’ ring expansion.
The activation energies of the thiazole–thiazine rearrangement
[20] L. P. Hammet. PhysicalOrganicChemistry, 2nd ed. McGraw-Hill: New
York, 1970.
[21] R. W. Taft. Polar and Steric Substituent Constants for Aliphatic and
o-Benzoate Groups from Rates of Esterification and Hydrolysis of
Esters. J. Am. Chem. Soc. 1952, 74, 3120.
[22] R. W. Taft, C. Grob. Separation of polar and resonance effects in the
ionization of 4-substituted pyridinium ions. J. Am. Chem. Soc. 1974,
96, 1236.
[23] B. J. Bronsted. Die katalytische Zersetzung des Nitramids und ihre
physikalisch-chemische Bedeutung. Z. Phys. Chem. 1924, 108, 185.
[24] M. Kraus. Advances in Catalysis, vol. 17. Academic Press: New York
and London, 1967, 75.
and reaction of CO2 formation decreased in the order: SiO2
>
CeO2/SiO2 ≈ TiO2/SiO2 > Al2O3/SiO2.
Acknowledgements
The authors thank Prof. V.M. Gun’ko and Dr V.I. Zarko (Chuiko
Institute of Surface Chemistry, Kyiv) for some oxide samples.
[25] V. P. Khylya, O. V. Shablykina, V. V. Ishchenko. Selected Methods for
Synthesis and Modification of Heterocycles, vol. 2,V. G. Kartsev (Ed).
IBS PRESS: Moscow, 2003, 518 (in Russian).
References
[26] M. E. Perelson, Yu.N. Sheinker, A. A. Savina. Spectra and Structures of
Coumarins, Chromones and Xanthones. Meditsina: Moscow, 1975.
[27] Medical Chemistry and Clinical Applications of Silica Dioxide,
A. A. Chuiko (ED). Naukova Dumka: Kyiv, 2003, 416 (in Russian).
[28] T. V. Kulik, N. P. Galagan, V. K. Pogoreliy, V. A. Pokrovskiy, Advances
in Mass Spectrometry, Proceedings of the 15th International Mass
Spectrometry Conference, vol. 15,E. Gelpi (Ed). John Wiley&Sons:
Chichester, 2001, 491.
[29] V. A. Pokrovskiy, N. P. Galagan, T. V. Kulik. Chemistry, Physics and
Technology of Surface, vol 4–6,O. O. Chuiko (Ed). Institute of Surface
chemistry: Kyiv, 2001, 332.
[30] T. V. Kulyk, V. V. Ischenko, B. B. Palyanytsya, V. P. Khylya, K. S. Kulyk,
V. N. Barvinchenko, V. K. Pogorelyi. A study on interactions of
coumarins and their heterocyclic derivatives with a surface of
silicabydesorptionmassspectrometrymethod. Mass-spectrometria
2007, 4, 179 (in Russian).
[31] T. V. Kulik, N. A. Lipkovska, V. N. Barvinchenko, B. B. Palyanytsya,
O. A. Kazakova, O. A. Dovbiy, V. K. Pogorelyi. Interactions between
bioactive ferulic acid and fumed silica by UV-VIS spectroscopy FT-IR,
TPD MS investigation and quantum chemical methods. J. Colloid
Interface Sci. 2009, 339, 60.
[32] T. V. Kulik, V. N. Barvinchenko, B. B. Palyanytsya, O. V. Smirnova,
V. K. Pogoreliy, A. A. Chuiko. ADesorptionMassSpectrometryStudy
of the Interaction of Cinnamic Acid with Silica Surface. Russ. J. Phys.
Chem. 2007, 81, 83.
[33] M. V. Borysenko, K. S. Kulyk, M. V. Ignatovych, E. N. Poddenezhny,
A. A. Boiko, A. O. Dobrodey. Nanomaterials and Supramolecular
Structures, A. P. Shpak, P. P. Gorbyk (Eds). Springer: Dordrecht, The
Netherlands, 2009, 227.
[1] F. Hillenkamp, M. Karas. Matrix-assisted laser desorption/ionisation,
an experience. Int. J. Mass Spectrom. 2000, 200, 71.
[2] K. Breuker, R. Knochenmuss, R. Zenobi. Proton transfer reactions of
matrix-assisted laser desorption/ionization matrix monomers and
dimers. J. Am. Soc. Mass Spectrom. 1999, 10, 1111.
[3] R. Zenobi, R. Knochenmuss. Ion formation in MALDI mass
spectrometry. Mass Spectrom. Rev. 1999, 17, 337.
[4] R. Knochenmuss,A. Stortelder,K. Breuker,R. Zenobi.Secondaryion-
molecule reactions in matrix-assisted laser desorption/ionization. J.
Mass spectrom. 2000, 35, 1237.
[5] S. Alimpiev, A. Grechnikov, J. Sunner, V. Karavanskii, Ya. Simanovsky,
S. Zhabin, S. Nikiforov. On the role of defects and surface chemistry
forsurface-assisted laserdesorption ionization from silicon. J.Chem.
Phys. 2008, 128, 14711.
[6] R. J. Cvetanovic, Y. Amenomiya.
A temperature programmed
desorption technique for investigation of practical catalysts. Catal.
Rev. 1972, 6, 21.
[7] J. A. Delgado, J. M. Gomez. Estimation of Adsorption Parameters
From Temperature-Programed-Desorption Thermograms: Applica-
tiontotheAdsorptionofCarbonDioxideontoNa-andH-Mordenite.
Langmuir 2005, 21, 9555.
[8] S. I. Nicholl, J. W. Talley. Development of thermal programmed
desorption mass spectrometry methods for environmental
applications. Chemosphere 2006, 63, 132.
[9] J. B. Miller, H. R. Siddiqui, S. M. Gates, J. N. Russell, J. T. Yates.
Extraction of kinetic parameters in temperature programmed
desorption: a comparison of methods. J. Chem. Phys. 1987, 87,
6725.
[34] W. Rudzinski, T. Borowiecki, A. Dominko, T. Panczyk.
A New
[10] S. I. Nicholl, J. W. Talley, S. Silliman. Model verification of thermal
programmed desorption-mass spectrometry for estimation of
release energy values for polycyclic aromatic hydrocarbons on
mineral sorbents. Environ. Toxicol. Chem. 2004, 23, 2545.
[11] T. Panczyk, P. Szabelski. The influence of lateral interactions
between adsorbed molecules on adsorption kinetics. A statistical
rate theory approach. J. Phys. Chem. B 2003, 107, 5586.
[12] W. Rudzinski, T. Panczyk. Remarksonthecurrentstateofadsorption
kinetic theories for heterogeneous solid surfaces: a comparison of
the ART and the SRT approaches. Langmuir 2002, 18, 439.
[13] V. V. Brei, V. M. Gun’ko, V. V. Dudnik, A. A. Chuiko. Study of Kinetics
andMechanismsofSomeUnimolecularReactionsonSilicaSurfaces.
Langmuir 1992, 8, 1968.
[14] V. M. Gun’ko, I. F. Mironyuk, V. I. Zarko, E. F. Voronin, V. V. Turov, E.
M. Pakhlov, E. V. Goncharuk, Y. M. Nychiporuk, N. N. Vlasova, P. P.
Gorbik, O. A. Mishchuk, A. A. Chuiko, T. V. Kulik, B. B. Palyanytsya,
S. V. Pakhovchishin, J. Skubiszewska-Zi ba, W. Janusz, R. Leboda.
Morphology and surface properties of fumed silicas. J. Colloid
Interface Sci. 2005, 289, 427.
Quantitative Interpretation of Temperature-Programmed
Desorption Spectra from Heterogeneous Solid Surfaces, Based
on Statistical Rate Theory of Interfacial Transport: The Effects of
Simultaneous Readsorption. Langmuir 1999, 15, 6386.
[35] J. Park, R. T. Yang. Predicting Adsorption Isotherms of Low-Volatile
Compounds by Temperature Programmed Desorption: Iodine on
Carbon. Langmuir 2005, 21, 5055.
[36] J. Joly, A. Perrard. Determination of the Heat of Adsorption of
Ammonia on Zeolites from Temperature-Programmed Desorption
Experiments. Langmuir 2001, 17, 15.
[37] V. M. Gun’ko, J. Skubiszewska-Zi ba, R. Leboda, V. I. Zarko. Fumed
Silica Modified Due to Pyrolysis of Methylene Chloride. Langmuir
2000, 16, 374.
[38] J. P. Blitz, V. M. Gun’ko (Eds). Surface Chemistry in Biomedical and
Environmental Science. Springer: Netherlands, Dordrecht, 2006,
135.
[39] J. J. Carberry. Chemical and Catalytic Reaction Engineering. McGraw-
Hill: New York, 1976.
[40] P. A. Redhead. Thermal Desorption of Gases. Vacuum 1962, 12, 245.
[41] M. U. Kisliyk, V. V. Rozanov. Temperature-programmed desorption
and temperature-programmed reaction - methods of studying of
kinetics and mechanisms of catalytic processes. Kinet. Katal. 1995,
36, 89.
[42] D. P. Woodruff, T. A. Delchar. Modern Techniques of Surface Science.
Cambridge University Press: London, 1986.
of Advanced Industrial Science and Technology, Last accessed:
March 21, 2009).
[15] P. Sykes. A Guidebook to Mechanism in Organic Chemistry. Longman
Scientific&Technical: London, 1986.
[16] H. H. Jaffe. A Reexamination of the Hammett Equation. Chem. Rev.
1953, 53, 191.
[17] P. R. Wells. Linear Free Energy Relationships. Chem. Rev. 1963, 63,
171.
[18] P. R. Wells, Linear Free Energy Relationships. Academic Press: New
York, 1968.
[19] L. P. Hammet. Some Relations between Reaction Rates and
Equilibrium Constants. Chem. Rev. 1935, 17, 125.
c
J. Mass. Spectrom. 2010, 45, 750–761
Copyright ꢀ 2010 John Wiley & Sons, Ltd.