Pirouetting Motion of Rotaxanes
3310±3317
Ha), 3.19 (m, 4H; Hz), 2.90 (m, 4H; Hx), 2.10 (m, 4H; Hy), 1.26 (s, 54H;
CH3); MS (FAB-MS): m/z: 2255.2 ([M PF6] , 2255.5).
[14] H. L. Schenck, G. P. Dado, S. H. Gellman, J. Am. Chem. Soc. 1996,
118, 12487 ± 12494.
[15] F. Würthner, J. Rebek, Jr., Angew. Chem. 1995, 107, 503 ± 505; Angew.
Chem. Int. Ed. Engl. 1995, 34, 446 ± 448.
Synthesis of 11: Complex 10 (40 mg, 16.6 mmol) was dissolved in CH2Cl2
(5 mL). KCN (26 mg; 0.38 mmol) was dissolved in water (1 mL) and added
to the former solution. CH3CN (2 mL) was added to the mixture and the
solution was stirred for 30 min before more CH3CN (2 mL) was added. The
solution was stirred until the initially dark red color had totally dissapeared
(about 1 h). The mixture was then extracted with CH2Cl2 and the resulting
organic layer was carefully washed with water and dried over Na2SO4. The
water was discarded by pouring it into a solution of sodium hypochlorite.
CH2Cl2 was removed to afford the demetalated rotaxane 11 as a colorless
solid (36 mg) quantitaively. Colorless solid; d 8.68 (d, J 8.1 Hz, 2H; t3),
8.53 (d, 2H, J 1.8 Hz; t6), 8.36 (d, J 7.9 Hz, 2H; t3'), 8.25 (d, J 8.9 Hz,
4H; Ho'), 8.21 (d, J 8.6 Hz, 2H; H4), 8.19 (d, J 8.4 Hz, 2H; H4',7'), 8.16 (d,
J 8.9 Hz, 4H; Ho), 7.98 (d, J 8.6 Hz, 2H; H3',8'), 7.96 (d, J 8.6 Hz, 2H;
H3), 7.90 (t, J 8, 2.2 Hz, 1H; t4'), 7.71 (s, 4H; H5,6, H5',6'), 7.61 (dd, J 8 Hz,
2H; t4), 7.20 (d, J 8.6 Hz, 12H; Hc), 7.07 (d, J 8.6 Hz, 12H; Hd), 7.00 (dd,
J 8.6 Hz, 4H; Hb), 6.94 (d, J 8.8 Hz, 4H; Hm), 6.92 (d, J 8.8 Hz, 4H;
Hm'), 6.65 (d, J 8.8 Hz, 4H; Ha), 4.06 (m, 4H; Ha), 4.00 (m, 4H; Hd), 3.79
(m, 12H; Hz, Hb,g), 2.86 (m, 4H; Hx), 2.08 (m, 4H; Hy), 1.28 (s, 54H; CH3);
[16] T. R. Kelly, J. P. Sestelo, I. Tellitu, J. Org. Chem. 1998, 63, 3655 ± 3665.
[17] A. C. Benniston, Chem. Soc. Rev. 1996, 428 ± 435.
Â
Â
[18] V. Balzani, M. Gomez-Lopez, J. F. Stoddart, Acc. Chem. Res. 1998, 31,
405 ± 414.
[19] P. R. Ashton, R. Ballardini, V. Balzani, I. Baxter, A. Credi, M. C. T.
Â
Â
Fyfe, M. T. Gandolfi, M. Gomez-Lopez, M.-T. Martínez-Díaz, A.
Piersanti, N. Spencer, J. F. Stoddart, M. Venturi, A. J. P. White, D. J.
Williams, J. Am. Chem. Soc. 1998, 120, 11932 ± 11942.
[20] M. Asakawa, S. Iqbal, J. F. Stoddart, N. D. Tinker, Angew. Chem. 1996,
108, 1054 ± 1056; Angew. Chem. Int. Ed. Engl. 1996, 35, 976 ± 978.
Á
[21] R. A. Bissel, E. Cordova, A. E. Kaifer, J. F. Stoddart, Nature 1994,
369, 133 ± 137.
[22] G. D. Santis, L. Fabbrizzi, D. Iacopino, P. Pallavicini, A. Perotti, A.
Poggi, Inorg. Chem. 1997, 36, 827 ± 832.
[23] P. Wittung-Stafshede, B. G. Malmström, J. R. Winkler, H. B. Gray, J.
Phys. Chem. 1998, 102, 5299 ± 5601.
[24] A. Ikeda, T. Tsudera, S. Shinkai, J. Org. Chem. 1997, 62, 3568 ± 3574.
[25] S. Zahn, J. W. Canary, Angew. Chem. 1998, 110, 321 ± 323; Angew.
Chem. Int. Ed. 1998, 37, 305 ± 307.
[26] J. Vacek, J. Michl, New J. Chem. 1997, 21, 1259 ± 1268.
[27] P. R. Ashton, V. Balzani, O. Kocian, L. Prodi, N. Spencer, J. F.
Stoddart, J. Am. Chem. Soc. 1998, 120, 11190 ± 11191.
[28] C. Canevet, J. Libman, A. Shanzer, Angew. Chem. 1996, 108, 2842 ±
2845; Angew. Chem. Int. Ed. Engl. 1996, 35, 2657 ± 2660.
[29] M. M. Bernardo, P. V. Robandt, R. R. Schroeder, D. B. Rorabacher, J.
Am. Chem. Soc. 1989, 111, 1224 ± 1231.
[30] T. T. Chin, W. E. Geiger, A. L. Rheingold, J. Am. Chem. Soc. 1996,
118, 5002 ± 5010.
[31] N. E. Katz, F. Fagalde, Inorg. Chem. 1993, 32, 5391 ± 5393.
[32] J. Moraczewski, C. A. Sassano, C. A. Mirkin, J. Am. Chem. Soc. 1995,
117, 11379 ± 11380.
[33] M. Sano, H. Taube, J. Am. Chem. Soc. 1991, 113, 2327 ± 2328.
[34] M. Sano, H. Taube, Inorg. Chem. 1994, 33, 705 ± 709.
[35] M. Sano, H. Sago, A. Tomita, Bull. Chem. Soc. Jpn. 1996, 69, 977 ± 981.
[36] A. Tomita, M. Sano, Inorg. Chem. 1994, 33, 5825 ± 5830.
[37] A. Tomita, M. Sano, Chem. Lett. 1996, 981 ± 982.
[38] J. W. E. Geiger, J. Am. Chem. Soc. 1979, 101, 3407 ± 3408.
[39] J. A. Wytko, C. Boudon, J. Weiss, M. Gross, Inorg. Chem. 1996, 35,
4469 ± 4470.
MS (FAB-MS): m/z: 2192.2 ([M H] , 2191.9).
2
Synthesis of 10(5) : Complex 11 (15.56 mg, 7 mmol) in CH2Cl2 (3 mL) was
introduced in a 10-mL flask and 1 mL of a 7mm pale blue solution of
CuII(BF4)2 in CH3CN (i.e. 7 mmol) was added. The solution turned pale
green and the volume was brought up to 10 mL with CH3CN. This solution
was used for both UVand CVexperiments. Part of it was evaporated to give
the mass characterization. Pale green solid; MS (FAB-MS): m/z: 2255.1
([M PF6] , 2255.5).
Electrochemistry: Electrochemical experiments were carried out using a
EGG Princeton 273 A model potentiostat. All experiments were run at
room temperature. For analytical experiments, a standard three-electrode
cell was used. Potentials are referenced to an Ag wire pseudo-reference
1
electrode with 0.1 mol
L
tetrabutylammonium tetrafluoroborate as
supporting electrolyte in an acetonitrile/dichloromethane (4/1) mixture as
solvent. A platinum disc electrode (2 mm diameter) was used for CV
experiments. A platinum wire (0.6 mm diameter, 52 cm long) was used as
working electrode for electrolysis at controlled potential.
Acknowledgment
[40] L. Zelikovich, J. Libman, A. Shanzer, Nature 1995, 790 ± 792.
[41] E. T. Singewald, C. A. Mirkin, C. L. Stern, Angew. Chem. 1995, 107,
1725 ± 1728; Angew. Chem., Int. Ed. Engl. 1995, 34, 1624 ± 1627.
[42] A. Livoreil, C. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc.
1994, 116, 9399 ± 9400.
We are grateful to the French Ministry of Education for a fellowship to L.R.
[1] J. Howard, Nature 1997, 389, 561 ± 567.
Ä
[43] J.-P. Collin, P. Gavina, J.-P. Sauvage, New. J. Chem. 1997, 21, 525 ± 528.
[2] K. Kitamura, M. Tokunaga, A. H. Iwane, T. Yanagida, Nature 1999,
397, 129 ± 134.
[44] A. Livoreil, J.-P. Sauvage, N. Armaroli, V. Balzani, L. Flamigni, B.
Venturi, J. Am. Chem. Soc. 1997, 119, 12114 ± 12124.
[45] C. Dietrich-Buchecker, J.-P. Sauvage, J.-P. Kintzinger, Tetrahedron
Lett. 1983, 24, 5095 ± 5098.
[46] C. Dietrich-Buchecker, J.-P. Sauvage, Tetrahedron Lett. 1983, 24,
5091 ± 5094.
[3] I. Rayment, H. M. Holden, M. Whittaker, C. B. Yohn, M. Lorenz,
K. C. Holmes, R. A. Milligan, Science 1993, 261, 58 ± 64.
[4] I. Rayment, W. R. Rypniewski, K. Schmidt-Bäse, R. Smith, D. R.
Tomchick, M. M. Benning, D. A. Winkelmann, G. Wesenberg, H. M.
Holden, Science 1993, 261, 50 ± 58.
[47] C. Dietrich-Buchecker, J.-P. Sauvage, J.-M. Kern, J. Am. Chem. Soc.
1984, 106, 3043 ± 3045.
[48] F. Arnaud-Neu, E. Marques, M.-J. Schwing-Weill, C. O. Dietrich-
Buchecker, J.-P. Sauvage, J. Weiss, New J. Chem. 1988, 12, 15 ± 20.
[49] H. W. Gibson, S.-H. Lee, P. T. Engen, P. Lecavalier, J. Sze, Y. X. Shen,
M. Bheda, J. Org. Chem. 1993, 58, 3748 ± 3756.
[5] I. Dobbie, M. Linari, G. Piazzesi, M. Reconditi, N. Koubassova, M. A.
Ferenczi, V. Lombardi, M. Irving, Nature 1998, 396, 383 ± 387.
[6] E. P. Sablin, F. J. Kull, R. Cooke, R. D. Vale, R. J. Fletterick, Nature
1996, 380, 555 ± 559.
[7] F. J. Kull, E. P. Sablin, R. Lau, R. J. Fletterick, R. D. Vale, Nature 1996,
380, 550 ± 555.
[50] C. Dietrich-Buchecker, J.-P. Sauvage, Tetrahedron 1990, 46, 503 ± 512.
[51] C. Dietrich-Buchecker, J.-M. Kern, J.-P. Sauvage, J. Am. Chem. Soc.
1989, 111, 7791 ± 7800.
[8] J. P. Abrahams, A. G. W. Leslie, R. Lutter, J. E. Walker, Nature 1994,
370, 621 ± 628.
[9] H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, Nature 1997, 386, 299 ±
302.
[52] C. Dietrich-Buchecker, P. A. Marnot, J.-P. Sauvage, J.-P. Kintzinger, P.
Á
Maltese, Nouv. J. Chim. 1984, 8, 573 ± 582.
[10] J. E. Walker, Angew. Chem. 1998, 110, 2438 ± 2450; Angew. Chem. Int.
Ed. 1998, 37, 2308 ± 2319.
[11] W. S. Allison, Acc. Chem. Res. 1998, 31, 819 ± 826.
[12] P. D. Boyer, Angew. Chem. 1998, 110, 2424 ± 2436; Angew. Chem. Int.
Ed. 1998, 37, 2296 ± 2307.
[53] P. Federlin, J.-M. Kern, A. Rastegar, C. Dietrich-Buchecker, P. A.
Marnot, J.-P. Sauvage, New J. Chem. 1990, 14, 9 ± 12.
[54] R. S. Nicholson, I. Shain, Anal. Chem. 1964, 36, 706 ± 723.
[13] L. Stryer in Biochemistry, 2nd ed., W. H. Freeman, San Fransisco,
1981, pp. 906 ± 907.
Received: March 29, 1999 [F 1703]
Chem. Eur. J. 1999, 5, No. 11
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
0947-6539/99/0511-3317 $ 17.50+.50/0
3317