(b) K. C. Nicolaou, P. Maligres, J. Shin, E. de Leon and D. Rideout,
of 8 with carbon tetrachloride and hydrogen abstraction by the
α-radical possibly from triethylamine leads to 6. In order to
examine our hypothesis for the formation of compound 4, a
control experiment was carried out; treatment of 3 with Et3N
under refluxing benzene and cyclohexa-1,4-diene under oxygen
atmosphere for 24 h. Compound 4 was isolated in 14% yield
and 20% of the starting nitrile 3 was recovered. The increased
amount of compound 4 isolated under these conditions
supports our hypothesis. The mechanism for the formation
of compound 5 is not clear at this stage. A possible pathway
is proposed. In the base-catalyzed isomerization of propargyl
sulfone to allenyl sulfone, a small amount of phenyl sulfonyl
anion was produced via an Ei mechanism. The phenyl sulfonyl
anion then added to the allenyl sulfone 7 via a 1,4-addition
to give compound 5.
J. Am. Chem. Soc., 1990, 112, 7825; (c) I. Saito, R. Nagata,
H. Yamanaka and E. Okazaki, Tetrahedron Lett., 1989, 30, 4995;
(d) I. Saito, R. Nagata, H. Yamanaka and E. Murahashi, Tetra-
hedron Lett., 1990, 31, 2907; (e) M. Shibuya, Y. Sakai, Y. Bando and
K. Shishido, Tetrahedron Lett., 1992, 33, 957; ( f ) K. Morokuma
and N. Koga, J. Am. Chem. Soc., 1991, 113, 1907; (g) K. Fujiwara,
H. Sakai and M. Hirama, J. Org. Chem., 1991, 56, 1688.
5 (a) M.-J. Wu, C.-F. Lin, J.-S. Wu and H.-T. Chen, Tetrahedron
Lett., 1994, 35, 1879; (b) M.-J. Wu, C.-F. Lin and C.-W. Ong,
Bioorg. Med. Chem. Lett., 1996, 6, 675; (c) M.-J. Wu, C.-F. Lin,
H.-T. Chen, T.-H. Duh, S.-S. Wang and S.-C. Hsu, Bioorg. Med.
Chem. Lett., 1996, 6, 2183; (d) W.-M. Dai, K. C. Fong, H. Danjo
and S.-i Nishimoto, Angew. Chem., Int. Ed. Engl., 1996, 35, 779;
(e) C.-F. Lin and M.-J. Wu, J. Org. Chem., 1997, 62, 4546.
6 For a review of cyclization of enyne-ketenes, see: H. W. Moore and
B. R. Yerxa, Chemtracts, 1992, 273.
In conclusion, we have demonstrated the first successful
example of thermal cyclization of the (Z)-hexa-2,4,5-tri-
enenitrile system to form isoquinoline derivatives and proved
that this cyclization involved a diradical intermediate. The
discovery of this new method of biradical formation provides
a valuable source for theoretical study of enediyne related
systems and an opportunity to design new DNA-cleaving anti-
tumor agents.
7 K. Nakatani, S. Isoe, S. Maekawa and I. Saito, Tetrahedron Lett.,
1994, 35, 605.
8 (a) C. Shi and K. K. Wang, J. Org. Chem., 1998, 63, 3517; (b) C. Shi,
Q. Zhang and K. K. Wang, J. Org. Chem., 1999, 64, 925.
9 (a) K. K. Wang, Z. Wang and P. D. Sattsangi, J. Org. Chem., 1996,
61, 1516; (b) T. Gillmann, S. Heckhoff and T. Weeber, Tetrahedron
Lett., 1996, 37, 839.
10 Some physical properties of 2, 3, 5, 6 and 7. 2: 1H NMR (CDCl3, 200
MHz) δ 7.19–7.64 (m, 9H), 3.91 (s, 3H); 13C NMR (CDCl3, 49.9
MHz) δ 134.8, 132.7, 132.6, 132.2, 130.5, 129.1, 128.3, 127.1, 126.8,
125.3, 117.4, 115.3, 92.4, 79.7, 60.4; MS (EI) m/z 249 (Mϩ, 100%),
140 (85%) (HRMS (EI) calcd. for C16H11NS 249.0613. Found
Acknowledgements
1
249.0609). 3: H NMR (CDCl3, 200 MHz) δ 8.07 (dd, 2H, J = 8.4,
We thank the National Science Council of the Republic of
China for financial support of this work.
1.4 Hz), 7.44–7.72 (m, 7H), 4.29 (s, 2H); 13C NMR (CDCl3, 49.9
MHz) δ 137.8, 134.4, 133.0, 132.8, 132.4, 129.3, 129.2, 128.8, 125.4,
117.0, 115.3, 83.5, 83.4, 49.3; MS (EI) m/z 281 (Mϩ, 5%), 233 (7%),
140 (100%) (HRMS (EI) calcd. for C16H11NO2S 281.0511. Found
281.0516). 4: 1H NMR (CDCl3, 400 MHz) δ 7.96 (d, 2H, J = 8.1 Hz),
7.51–7.69 (m, 6H), 7.35 (t, 1H, J = 7.6 Hz), 6.21 (s, 1H), 4.27 (s, 2H);
MS (EI) m/z 299 (Mϩ, 23%), 267 (36%), 158 (100%) (HRMS calcd.
Notes and references
1 For selected reviews of enediyne chemistry, see: (a) J. W. Grissom,
G. U. Gunawardena, D. Klingberg and D. Huang, Tetrahedron,
1996, 52, 6453; (b) K. K. Wang, Chem. Rev., 1996, 96, 207;
(c) K. C. Nicolaou, W.-M. Dai, S.-C. Tsai, V. Z. Estevez and
W. Wrasidlo, Science, 1992, 256, 1172; (d) K. C. Nicolaou and
A. L. Smith, Acc. Chem. Res., 1992, 25, 497; (e) K. C. Nicolaou and
W.-M. Dai, Angew. Chem., Int. Ed. Engl., 1991, 30, 1387.
1
for C16H13NO3S 299.0617. Found 299.0608). 5: H NMR (CDCl3,
400 MHz) δ 8.21 (s, 1H), 7.93 (dd, 2H, J = 8.6, 1.1 Hz), 7.46–7.76
(m, 14H), 4.42 (s, 2H); MS (EI) m/z, 282 (Mϩ Ϫ C6H5SO2), 218 (17),
141 (38), 77 (100) (HRMS calcd. for C16H12NOS (Mϩ Ϫ C6H5SO2)
1
282.0590. Found 282.0590). 6: H NMR (CDCl3, 400 MHz) δ 8.20
(dt, 1H, J = 7.9, 0.7 Hz), 7.86 (dt, 2H, J = 7.9, 0.7 Hz), 7.42–7.73 (m,
6H), 6.64 (s, 1H), 4.26 (d, 2H, J = 3.1 Hz); 13C NMR (CDCl3, 100
MHz) δ 144.9, 138.3, 136.1, 135.1, 134.5, 129.7, 129.4, 129.2, 128.5,
128.4, 126.0, 120.7, 109.5, 29.7 (HRMS calcd. for C16H12O2N35ClS
317.0279. Found 317.0266).
2 R. R. Jones and R. G. Bergman, J. Am. Chem. Soc., 1972, 94, 660.
3 (a) A. G. Myers, P. S. Dragovich and E. Y. Kuo, J. Am. Chem. Soc.,
1992, 114, 9369; (b) A. G. Myers, E. Y. Kuo and N. S. Finney, J. Am.
Chem. Soc., 1989, 111, 8057; (c) A. G. Myers and P. S. Dragovich,
J. Am. Chem. Soc., 1989, 111, 9130.
4 (a) K. Toshima, O. Kazumi, A. Ohashi, T. Nakamura, M. Nakata,
K. Tatsuta and S. Matsumura, J. Am. Chem. Soc., 1995, 117, 4822;
Communication 9/05509F
2876
J. Chem. Soc., Perkin Trans. 1, 1999, 2875–2876