48
A. Crossman et al. / Carbohydrate Research 321 (1999) 42–51
,
HO-1), 3.17 (dd, 1 H, J5%,6%b 2.3, H-6%b), 3.27 (t,
1 H, J4,5=J5,6 9.4, H-5), 3.34 (dd, 1 H, J2,3
2.3, J3,4 9.8, H-3), 3.40 (dd, 1 H, J1%,2% 3.6, J2%,3%
10, H-2%), 3.51 (m, 1 H, H-1), 3.56 and 3.86
(2×m, 2 H, OCH2), 3.65 (t, 1 H, J3%,4%=J4%,5%
9.3, H-4%), 3.75 (t, 1 H, J1,2 =J2,3 2.3, H-2),
3.80–3.88 (3 H, H-3%, 5%, 6), 3.93 (t, 1 H, H-4),
4.05–4.95 (12 H, 6×CH2Ph), 5.45 (d, 1 H,
H-1%), 6.90–7.50 (30 H, 6×Ph); ESMS(+):
m/z 1037 [M+NH4]+.
and 4 A molecular sieves (1 g). After stirring
of the mixture at rt for 15 min under argon, it
was cooled to 0 °C and pre-dried silver
perchlorate (484 mg, 2.15 mmol) and 1,1,3,3-
tetramethylurea (62 mL, 520 mmol) were
added. Stirring of the mixture under argon at
0 °C was continued overnight, whereafter it
was percolated through a short column of
silica gel (elution with diethyl ether) and the
eluent was concentrated under reduced pres-
sure. RBC (1:4 diethyl ether–cyclohexane) of
the residue gave a mixture of the a- and
b-linked compounds 12 (377 mg, 70%) in the
1-
oxy-h-
D
-6-O-(2-Azido-3,4,6-tri-O-benzyl-2-de-
-glucopyranosyl)-3,4,5-tri-O-benzyl-2-
D
O-hexadecyl-myo-inositol (15).—To a stirred
solution of the methoxybenzyl compound 12
(280 mg, 0.22 mmol) in CH2Cl2 (10 mL) at rt
was added TFA (241 mL, 3.1 mmol). After 1
h, the solution was neutralised with Et3N and
washed successively with water and brine,
dried MgSO4, and evaporated under reduced
pressure. RBC (1:1 diethyl ether–hexane) of
the residue gave the a-coupled compound 15
(169 mg, 67%) as an oil; Rf 0.48 (solvent A);
[h]D +21° (c 1.2, CHCl3); lH 0.80 (t, 3 H, J
7.1, CH2Me), ꢀ1.20 (26 H, [CH2]13), 1.52 (m,
2 H, OCH2CH2), 3.02 (dd, 1 H, J5%,6%a 2.0,
J6%a,6%b 11.0, H-6%a), 3.07 (d, 1 H, J1,OH 6.9,
HO-1), 3.17 (dd, 1 H, J5%,6%b 2.1, H-6%b), 3.27 (t,
1 H, J4,5=J5,6 9.5, H-5), 3.33 (dd, 1 H, J2,3
2.2, J3,4 9.5, H-3), 3.40 (dd, 1 H, J1%,2% 3.6, J2%,3%
10.3, H-2%), 3.50 (m, 1 H, H-1), 3.55 and 3.82
(2×m, 2 H, OCH2), 3.65 (t, 1 H, J3%,4%=J4%,5%
9.4, H-4%), 3.75 (t, 1 H, J1,2 =J2,3 2.2, H-2),
3.85 (3 H, H-3%, 5%, 6), 3.93 (t, 1 H, H-4),
4.05–5.00 (12 H, 6×CH2Ph), 5.43 (d, 1 H,
1%-H), 6.90–7.40 (30 H, 6×Ph); ESMS(−):
m/z 1130 [MꢁH]−.
1
ratio of ꢀ3:1 (determined by H NMR spec-
troscopy); [h]D +18.4° (c 1.3, CHCl3); lH 0.80
(t, 3 H, J 7.1, CH2Me), ꢀ1.20 (26 H,
[CH2]13), 1.47 (m, 2 H, OCH2CH2), 3.07 (dd, 1
H, J5%,6%a 2.1, J6%a,6%b 11.0, H-6%a), 3.10–3.15 (2
H, H-2%, 6%b), 3.25 (dd, 1 H, J1,2 2.2, J1,6 9.8,
H-1), 3.29–3.35 (2 H, H-3, 5), 3.55–3.61 (3 H,
OCH2, H-4%), 3.69 (s, 3 H, ArOCH3), 3.76 (t, 1
H, J2,3 2.2, H-2), 3.87 (t, 1 H, J2%,3%=J3%,4% 10.2,
H-3%), 3.94 (2 H, H-5%, 6), 4.07 (t, 1 H, J3,4=
J4,5 9.5, H-4), 4.32 (d, 1 H, J1%,2% 8.2, H-1% b
anomer), 4.30–5.00 (m, 14 H, 7×CH2Ar),
5.64 (d, 1 H, J1%,2% 3.7, H-1% a anomer), 6.70–
7.30 (34 H, C6H4 and 6×Ph); ESMS(+): m/z
1274 [M+Na]+.
1-
D
-6-O-(2-Azido-3,4,6-tri-O-benzyl-2-de-
-glucopyranosyl)-3,4,5-tri-O-benzyl-2-
oxy-h-
D
O-octyl-myo-inositol (14).—A solution of the
methoxybenzyl derivative 11 (110 mg, 96.5
mmol) in CH2Cl2 (10 mL) containing TFA
(104 mL, 1.35 mmol) was set aside at rt for 1
h, whereafter it was neutralised with Et3N,
washed successively with water and brine,
dried (MgSO4), and concentrated under re-
duced pressure. Trituration of the residue with
hexane deposited the crystalline b anomer 13
(20 mg, 20%), mp 137–139 °C; [a]D –34° (c
0.3, CHCl3); lH 4.57 (d, 1 H, J1%,2% 7.9, H-1%);
ESMS(+): m/z 1037 [M+NH4]+. Anal.
Calcd for C62H73O10N3: C, 73.0; H, 7.2; N,
4.1. Found: C, 73.0; H, 7.6; N, 4.1. RBC (1:2
diethyl ether–hexane) of the mother liquor
furnished the a-linked compound 14 (45 mg,
46%) as an opaque oil; Rf 0.40 (solvent A);
[h]D +18° (c 1.1, CHCl3); lH 0.81 (t, 3 H, J
7.1, CH2Me), ꢀ1.25 (10 H, [CH2]5), 1.52 (m,
2 H, OCH2CH2), 3.02 (dd, 1 H, J5%,6%a 2.0,
J6%a,6%b 11, H-6%a), 3.08 (d, 1 H, J1,OH 6.9,
Triethylammonium 1-
tri-O-benzyl-2-deoxy-h-
5-tri-O-benzyl-2-O-octyl-myo-inositol 1-(1,2-
di-O-hexadecanoyl-sn-glycerol 3-phosphate)
D-6-O-(2-azido-3,4,6-
D-glucopyranosyl)-3,4,
(19).—Compound 14 (45 mg, 0.044 mmol)
and 1,2-di-O-hexadecanoyl-sn-glycerol 3-hy-
drogenphosphonate TEA salt 16 [9] (65 mg,
0.089 mmol) were each dried overnight over
P2O5 and dried further by evaporation of an-
hyd pyridine (3×2 mL) therefrom. To a solu-
tion of the mixture in dry pyridine (10 mL)
was added pivaloyl chloride (68 mL,
0.55 mmol), and the resulting solution was
stirred under argon for 1 h; TLC (9:1