ARTICLE
8 Li, L.; Guo, X.; Wang, J.; Liu, P.; Prud’homme, R. K.; May, B.
due to host-guest inclusion complexation between adamantyl
and cyclodextrin pendent groups. However, the viscosity con-
stantly and drastically decreases with increasing temperature
since the inclusion complexation is enthalpy driven. That is,
temperature increases leads to decreases in the number of
inclusion complexes, which in turn result in lower apparent
molecular weight and decreased viscosity.8,53,54 This may
result in a thermoreversible gel system such as has been
reported by Hennick et al. for a star-shaped eight-arm PEG
which was end-modified with b-cyclodextrin and cholesterol
moieties. The storage (G0) and loss moduli (G00) of the hydro-
gel system formed by the mixture of b-cyclodextrin end-
capped PEG and cholesterol end-capped PEG decreased with
L.; Lincoln, S. F. Macromolecules 2008, 41, 8677–8681.
9 Koopmans, C.; Ritter, H. Macromolecules 2008, 41,
7418–7422.
10 Charlot, A.; Auzely-Velty, R. Macromolecules 2007, 40,
1147–1158.
11 Hasegawa, Y.; Miyauchi, M.; Takashima, Y.; Yamaguchi, H.;
Harada, A. Macromolecules 2005, 38, 3724–3730.
12 Daoud-Mahammed, S.; Grossiord, J. L.; Bergua, T.; Amiel,
C.; Couvreur, P.; Gref, R. J Biomed Mater Res 2008, 86A,
736–748.
13 Li, J.; Ni, X.; LeongK. W. J Biomed Mater Res 2003, 65A,
ꢀ
increasing temperature from 4 to 37 C and reverted back to
196–202.
original values with cooling.55 Another important factor,
which leads to decreased viscosity may be increasing phase
separation with temperature; this may explain the slight
decrease of the viscosity seen even for P(PEGMA-co-10MCD).
14 Li, J.; Yang, C.; Li, H.; Wang, X.; Ding, J.; Wang, D.; Leong,
K. W. Adv Mater 2006, 18, 2969–2674.
15 Nagy, M.; Szollosi, L.; Keki, S.; Herczegh, P.; Batta, G.;
Zsuga, M.
5149–5155.
J Polym Sci Part A: Polym Chem 2007, 45,
CONCLUSIONS
Methacrylate monomers bearing cyclodextrin and adaman-
tane pendent groups were synthesized and copolymerized
16 Ren, L.; He, L.; Sun, T.; Dong, X.; Chen, Y.; Huang, J.; Wang,
C. Macromol Biosci 2009, 9, 902–910.
1
with PEGMA by free radical polymerization. Both 13C and H
17 Zhang, J.; Xue, Y.; Gao, F.; Huang, S.; Zhuo, R. J Appl
solution NMR showed peaks associated with adamantyl and
cyclodextrin units besides PEGMA units. Although micelle
formation (hydrophobic interaction of adamantyl groups)
was observed for the copolymer bearing APM moieties
examined by 1H-NMR, these associations did not inhibit the
host-guest complex formation between pendent adamantyls
with free CD. The viscoelastic properties of supramolecular
assemblies were investigated with frequency and tempera-
ture sweep experiments. It was shown that PEG units did
not form stable complexes with pendent CD groups, while
the specific host-guest interaction between pendent adaman-
tyl and cyclodextrin moieties lead to large increases in vis-
cosity: It has thus been shown that the viscosity of these sys-
tems is tunable by varying the concentration of these groups
in water-soluble copolymers.
Polym Sci 2008, 108, 3031–3037.
18 Tomatsu, I.; Hashidzume, A.; Harada, A. Macromol Rapid
Commun 2006, 27, 238–241.
19 Kretschmann, O.; Choi, S.; Miyauchi, M.; Tomatsu, I.;
Harada, A.; Ritter, H. Angew Chem Int Ed 2006, 45,
4361–4365.
20 Tomatsu, I.; Hashidzume, A.; Harada, A. Macromolecules,
2005, 38, 5223–5227.
21 Bellocq, N. C.; Kang, D. W.; Wang, X.; Jensen, G. S.; Pun, S.
H.; Schluep, T.; Zepeda, M. L.; Davis, M. E. Bioconjugate Chem
2004, 15, 1201–1211.
22 Davis, M. E., Pun, S. H., Bellocq, N. C., Reineke, T. M.,
Popielarski, S. R., Mishra, S., and Heidel, J. D. Curr Med Chem
2004, 11, 179–197.
23 Cheng, Z.; Zhu, X.; Kang, E. T.; Neoh, K. G. Langmuir 2005,
REFERENCES AND NOTES
21, 7180–7185.
24 Yamamoto, S.; Pietrasik, J.; Matyjaszewski, K. Macromole-
1 Wenz, G. Angewandte Chemie 1994, 106, 851–870.
cules 2008, 41, 7013–7020.
2 Rusa, C. C.; Tonelli, A. E. Macromolecules 2000, 33,
25 Magnusson, J. P.; Khan, A.; Pasparakis, G.; Saeed, A. O.;
1813–1818.
Wang, W.; Alexander, C.
10852–10853.
J Am Chem Soc 2008, 130,
3 Choi, H. S.; Ooya, T.; Sasaki, S.; Yui, N. Macromolecules
2003, 36, 5342–5347.
26 Xu, F. J.; Li, Y. L.; Kang, E. T.; Neoh, K. G. Biomacromole-
4 Bibby, D. C.; Davies, N. M.; Tucker, I. G. Int J Pharm 2000, 197,
cules 2005, 6, 1759–1768.
1–11.
27 Fournier, D.; Hoogenboom, R.; Thijs, H. M. L.; Paulus, R. M.;
5 Huh, K. M.; Ooya, T.; Lee, W. K.; Sasaki, S.; Kwon, I. C.;
Schubert, U. S. Macromolecules 2007, 40, 915–920.
Jeong, S. Y.; Yui, N. Macromolecules 2001, 34, 8657–8662.
28 Hang, X.; Lian, X.; Liu, L.; Zhang, J.; Zhao, H. Macromole-
6 Auletta, T.; De Jong, M. R.; Mulder, A.; Van Veggel, F.;
Huskens, J.; Reinhoudt, D. N.; Zou, S.; Zapotoczny, S.; Schoen-
herr, H.; Vancso, G. J.; Kuipers, L. J Am Chem Soc 2004, 126,
1577–1584.
cules 2008, 41, 7863–7869.
29 Lee, H.; Lee, E.; Kim, D. K.; Jang, N. K.; Jeong, Y. Y.; Jon, S.
J Am Chem Soc 2006, 128, 7383–7389.
7 Guo, M.; Jiang, M.; Pispas, S.; Yu, W.; Zhou, C. Macromole-
30 Kalra, B.; Kumar, A.; Gross, R. A.; Baiardo, M.; Scandola, M.
cules 2008, 41, 9744–9749.
Macromolecules 2004, 37, 1243–1250.
SUPRAMOLECULAR ASSEMBLIES BASED ON CYCLODEXTRIN, KAYA AND MATHIAS
591