is known to produce a mixture of six-membered flavones 3
and five-membered aurones 4 (Scheme 1).
Our need for a mild and convergent method to be used in
the combinatorial synthesis of a flavonoid library promoted
us to reinvestigate the synthetic approach illustrated in
Scheme 1.
Palladium-based catalysts are renowned for their great
tunability by combining with different ligands. In comparison
with homopalladium catalysts, palladium-thiourea com-
plexes have the advantage of catalyzing a facile carbonylation
reactions.9
Scheme 1. Palladium-Catalyzed Carbonylative Cyclization of
o-Iodophenols and Acetylenes
We previously demonstrated that palladium-thiourea is
an effective cocatalyst for the syntheses of 2,3-disubstituted
benzo[b]furans by carbonylative annulation under very mild
conditions (at 45 °C under a balloon pressure of CO).10 We
reported here our recent results for the use the PdCl2(Ph3P)2-
thiourea-dppp (1:1:1) complex as a powerful catalyst for
the syntheses of flavonoid molecules.
Mechanistically, the formations of six-membered flavones
3 and five-membered aurones 4 presumably result from the
6b,c,7,8
different processes
shown in Figure 1.
Initially, four pairs of iodophenols and acetylenes were
selected as substrates to test this carbonylative annulation
because they are either commercially available or easily
accessible. To our delight, the six-membered flavones (5a-
8a) were obtained in acceptable yields (50-70%) by using
the complex of PdCl2(Ph3P)2-thiourea as a catalyst in the
(3) (a) Stockwell, B. R.; Haggarty, S. J. Schreiber, S. L. Chem. Biol.
1999, 6, 71-83. (b) Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King,
R. W.; Schreiber, S. L.; Mitchison, T., J. Science 1999, 286, 971-974.
(4) (a) Allan, J.; Robinson, R. J. Chem Soc. 1926, 2335. (b) Robinson,
R.; Venkataraman, K. J. Chem. Soc. 1926, 2344. (c) Lynch, H. M.; O’Toole,
T. M.; Wheeler, T. S. J. Chem. Soc. 1952, 2063. (d) Ollis, W. D.; Weight,
D. J. Chem. Soc. 1952, 3826. (e) Meyer-Dayan, M.; Bodo B.; Deschamps-
Vallet, C.; Molho, D. Tetrahedron Lett. 1978, 3359. (f) Garcia, H.; Iborra,
S.; Primo, J.; Miranda, M. A. J. Org. Chem. 1986, 51, 4432. (g) McGarry,
L. W.; Detty, M. R. J. Org. Chem. 1990, 55, 4349. (h) Pinto, D. C. G. A.;
Silva, A. M. S.; Cavaleiro, J. A. S. J. Heterocycl. Chem. 1996, 33, 1887.
(i) Riva, C.; Toma, C. D.; Donadel. L.; Boi, C.; Pennini, R.; Motta, G.;
Leonardi, A. Synthesis 1997, 195. (j) Marder, M.; Viola, H.; Bacigaluppo,
J. A.; Colombo, M. I.; Wasowski, C.; Wolfman, C.; Medina, J. H.; Ru´veda,
E. A.; Paladini, A. C. Biochem. Biophys. Res. Commun. 1998, 249, 481.
(k) Costantino, L.; Rastelli, G.; Gamberini, M. C.; Vinson, J. A.; Bose, P.;
Iannone, A.; Staffieri, M.; Antolini, L.; Corso, A. D.; Mura, U.; Albasini,
A. J. Med. Chem. 1999, 42, 1881. (l) Dekermendjian, K.; Kahnberg, P.;
Witt, M.-R.; Sterner, O.; Nielsen, M.; Liljefors, T. J. Med. Chem. 1999,
42, 4343. (m) Lokshin, V.; Heynderickx, A.; Samat, A.; Pe`pe, G.;
Guglielmetti R. Tetrahedron Lett. 1999, 40, 6761. (n) Tabaka, A. C.; Murthi,
K. K.; Pal, K.; Teleha, C. A. Org. Process Res. DeV. 1999, 3, 256.
(5) (a) Larock, R. C.; Harrison, L. W. J. Am. Chem. Soc. 1984, 106,
4218. (b) Larock, R. C.; Stinn, D. E. Tetrahedron Lett. 1988, 29, 4687. (c)
Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron Lett. 1989, 30, 2581. (d)
Larock, R. C.; Berrios-Pena, N.; Narayanan, K. J. Org. Chem. 1990, 55,
3447. (e) Kalinin, V. N.; Shostakovsky, M. V.; Ponomaryov, A. B.
Tetrahedron Lett. 1992, 33, 373. (f) Larock, R. C. Berrios-Pena, N. G.;
Fried, C. A.; Yum. E. K.; Tu, C.; Leong, W. J. Org. Chem. 1993, 58, 4509.
(g) Kondo, Y.; Shiga, F.; Murata, N.; Sakamoto, T.; Yamanaka, H.
Tetrahedron 1994, 50, 11803. (h) Anacardio, R.; Arcadi, A.; D’Anniballe,
G.; Marinelli, F. Synthesis 1995, 831. (i) Larock, R. C.; Yum, E. K.; Doty,
M. J.; Sham, K. K. C. J. Org. Chem. 1995, 60, 3270. (j) Liao, H. Y.; Cheng,
C. H. J. Org. Chem. 1995, 60, 3711. (k) Larock, R. C.; Doty, M. J.; Han,
X.-J. J. Org. Chem. 1999, 64, 8770. (l) Larksarp. C.; Alper, H. J. Org.
Chem. 1999, 64, 9194.
Figure 1. Mechanistic interpretation for the formation of flavone
3 and aurone 4.
In this catalytic cycle, D would be a critical intermediate
in the formation of 3 and 4. The intermediate D might form
a complex G with palladium(0), followed by rearrangement
and reductive elimination to afford aurones 4. On the other
hand, the same intermediate D could either undergo a direct
6-endo-dig cyclization or proceed through E and F stages
to form flavones 3 (see Figure 1).
Torii and Kalinin have nicely resolved this regioselective
problem by using a large excess of diethylamine to com-
petitively generate the intermediate E from D in order to
form the six-membered scaffold of flavone 3 (Figure 1).
However, the employed conditions are rather drastic (120
°C, 20 kg/cm2).6c
(6) (a) Kalinin, V. N.; Shostakovsky, M. V.; Ponamaryov, A. B.
Tetrahedron Lett. 1990, 31, 4073. (b) Ciattini, P. G.; Morera, E.; Ortar, G.;
Rossi, S. S. Tetrahedron 1991, 47, 6449. (c) Torri, S. Okumoto H.; Xu,
L.-H.; Sadakane, M.; Shostakovsky, M. V.; Ponomaryov, A. B.; Kalinin,
V. N. Tetrahedron 1993, 49, 6773.
(7) Bhat, A. S.; Whetstone, J. L.; Brueggemeier, R. W. Tetrahedron Lett.
1999, 40, 2469.
Recently, Brueggemeier7 developed a different approach
to the synthesis of flavonoid molecules. Although his method
has resolved the regioselectivity problem for the synthe-
sis of flavones, multiple steps had to be added to achieve
this.
(8) (a) Arcadi, A.; Cacchi, S.; Carnicelli, V.; Marinelli, F. Tetrahedron
1994, 50, 437. (b) An, Z. W.; Catellani, M.; Chiusoli, G. P. J. Organomet.
Chem. 1990, 397, 371.
(9) (a) Choudary, Gabriele, B.; Salerno, G.; Cosat, M.; Chiusoli, G. P.
J. Organom. Chem. 1995, 503, 21-28. (b) Gabriele, B. Costa, M.; Salerno,
G.; Chiusoli, G. P. J. Chem. Soc., Chem. Commun. 1992, 1007.
(10) Nan, Y.; Miao, H.; Yang, Z. Org. Lett. 2000, 2, 297.
1766
Org. Lett., Vol. 2, No. 12, 2000