reduction using NaBH4.8 We here disclose a practical
procedure for the hydrogenation of benzophenones using the
recently discovered RuCl2(phosphine)2(1,2-diamine) com-
plexes as precatalysts.9,10 Furthermore, the reaction using a
chiral Ru complex effects the enantioselective conversion
of appropriately substituted diaryl ketones to chiral diaryl-
methanols.
Benzophenone can be hydrogenated to benzhydrol in a
nearly quantative yield under 8 atm of hydrogen in 2-pro-
panol containing trans-RuCl2[P(C6H4-4-CH3)3]2 (NH2CH2-
CH2NH2) (3) and t-C4H9OK ([ketone] ) 1 M, ketone/Ru/
base ) 3000:1:12, 35 °C, 18 h). No diphenylmethane was
detected in the product. Table 1 exemplifies the hydrogena-
regardless of the substituents, while halogen atoms, CF3, and
methoxy groups in the aromatic ring were left intact.9 This
hydrogenation can be conducted with a substrate/catalyst
molar ratio (S/C) as high as 20000. The reaction does not
require a homogeneous 2-propanol solution of a ketonic
substrate, and sparingly soluble solid benzophenones can be
subjected to hydrogenation as a slurry (for example, 200 g
of benzophenone in 200 mL of 2-propanol with mechanical
strirring at 700 rpm), thereby maintaining a high rate and
also minimizing the quantity of solvent.
Separate experiments showed that p-trifluoromethylben-
zophenone was hydrogenated 11 times faster than the
p-methoxy derivative (5 atm, 28 °C). Thus, in this hydro-
genation, electron-withdrawing substituents are favored over
donor groups, but the difference is unimportant from a
synthetic point of view. The electronic effect of ring
substituents on the rate was also examined by competition
experiments using an equimolar mixture of benzophenone
and a series of para-substituted benzophenones and 3 as
catalyst. When the relative rates were plotted against the σp
constant,11 a linear relationship with a F value of +1.78 was
obtained (see the Supporting Information). The sensitivity
to the electronic influence in the hydrogenation of para-
substituted benzophenones is higher than in the reaction of
acetophenone derivatives with 3, which showed F ) +0.99.
This value is less than +3.1 observed in the NaBH4 reduction
of acetophenones.12,13
Table 1. Ruthenium(II)-Catalyzed Hydrogenation of
Benzophenonesa
ketone 1
R1
conditions
concnc (M)
alcohol 2
R2
S/Cb
yieldd (%)
He
o-CH3
o-Cl
m-Cl
p-C6H5
p-CH3O
p-F
p-F
p-Cl
p-CF3
H
H
H
H
H
H
H
p-F
H
20000
3000
2000
2000
2000
3000
2000
3000
3000
2000
2.7
1.5
0.8
0.4
0.4
1.5
0.4
1.4
1.3
0.4
99
99
97
98
99f
99
99
99
100
99g
(7) Transfer hydrogenation: (a) Kleinfelter, D. C. J. Org. Chem. 1967,
32, 840-842. (b) Mestroni, G.; Zassinovich, G.; Camus, A.; Martinelli, F.
J. Organomet. Chem. 1980, 198, 87-96. (c) Ram, S.; Spicer, L. D. Synth.
Commun. 1992, 22, 2673-2681. (d) Fujii, A.; Hashiguchi, S.; Uematsu,
N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521-2522. (e)
Mizushima, E.; Yamaguchi, M.; Yamagishi, T. Chem. Lett. 1997, 237-
238.
H
a Unless otherwise stated, reactions were conducted at 8 atm of H2 for
6-18 h at 28-35 °C using a 2.5-12.5 mmol of the substrate 1 (S) in
2-propanol containing the precatalyst 3 (C) and t-C4H9OK. b Substrate/
catalyst molar ratio. Base/3 ) 8. c Concentration of the substrate. d Deter-
mined by GC analysis. e Reaction using 200 g (1.1 mol) of benzophenone
for 48 h. Base/3 ) 40. f Isolated yield. g Yield after 1 h.
(8) Another standard method benzhydrol preparetion is via the addition
of arylmetals to benzaldehydes.
(9) (a) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa,
M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. Angew. Chem.,
Int. Ed. 1998, 37, 1703-1707. (b) Ohkuma, T.; Koizumi, M.; Doucet, H.;
Pham, T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya,
T.; Noyori, R. J. Am. Chem. Soc. 1998, 120, 13529-13530.
(10) See also: (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675-2676. (b) Ohkuma, T.;
Ooka, H.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 10417-
10418. (c) Ohkuma, T.; Ooka, H.; Yamakawa, M.; Ikariya, T.; Noyori, R.
J. Org. Chem. 1996, 61, 4872-4873. (d) Ohkuma, T.; Ikehira, H.; Ikariya,
T.; Noyori, R. Synlett 1997, 467-468. (e) Ohkuma, T.; Doucet, H.; Pham,
T.; Mikami, K.; Korenaga, T.; Terada, M.; Noyori, R. J. Am. Chem. Soc.
1998, 120, 1086-1087. (f) Mikami, K.; Korenaga, T.; Terada, M.; Ohkuma,
T.; Pham, T.; Noyori, R. Angew. Chem., Int. Ed. 1999, 38, 495-497.
(11) Hammett, L. P. Physical Organic Chemistry, 2nd ed.; McGraw-
Hill: New York, 1970; Chapter 11.
tion of a range of substituted benzophenones 1 (Scheme 1).
Benzhydrol itself and the p-CH3, -phenyl, and -chloro and
p,p′-difluoro derivatives are useful intermediates for synthe-
ses of commercial drugs.1 The yield of ortho-, meta-, and
para-substituted benzhydrol products 2 was consistently high
Scheme 1
(12) For kinetics of NaBH4 reduction of ketones, see: Brown, H. C.;
Wheeler, O. H.; Ichikawa, K. Tetrahedron 1957, 1, 214-220.
(13) (a) Bowden, K.; Hardy, M. Tetrahedron 1966, 22, 1169-1174. (b)
Bruce, G. T.; Cooksey, A. R.; Morgan, K. J. J. Chem. Soc., Perkin Trans.
2 1975, 551-553.
(14) XylBINAP ) 2,2′-bis(di-3,5-xylylphosphino)-1,1′-binaphthyl. Tol-
BINAP ) 2,2′-bis(di-4-tolylyphosphino)-1,1′-binaphthyl. DAIPEN ) 1,1-
di(4-anisyl)-2-isopropyl-1,2-ethylenediamine.
(15) For asymmetric reduction of diaryl ketones using silicon- and boron-
based hydrides, see: (a) Peyronel, J.-F.; Fiaud, J.-C.; Kagan, H. B. J. Chem.
Res. Miniprint 1980, 4057-4080. (b) Brunner, H.; Ku¨rzinger, A. J.
Organomet. Chem. 1988, 346, 413-424. (c) Brown, E.; Penfornis, A.;
Bayma, J.; Touet J. Tetrahedron: Asymmetry 1991, 2, 339-342. (d) Brown
E, Le´ze´ A, Touet J. Tetrahedron: Asymmetry 1992, 3, 841-844. (e) Shieh,
W.-C.; Cantrell, W. R., Jr.; Carlson, J. A. Tetrahedron Lett. 1995, 36, 3797-
3800. (f) Ramachandran, P. V.; Chen, G.-M.; Brown, H. C. Tetrahedron
Lett. 1996, 37, 2205-2208. (g) Corey, E. J.; Helal, C. J. Angew. Chem.,
Int. Ed. 1998, 37, 1986-2012, and references therein.
660
Org. Lett., Vol. 2, No. 5, 2000