C O M M U N I C A T I O N S
Scheme 2. Synthesis of (-)-Isodomoic Acid Ca
key intermediates and spectroscopic comparison of natural and synthetic
(-)-isodomoic acid C. This material is available free of charge via the
References
(1) Maeda, M.; Kodama, T.; Tanaka, T.; Yoshizumi, H.; Takemoto, T.;
Nomoto, K.; Fujita, T. Chem. Pharm. Bull. 1986, 34, 4892-4895.
(2) For isodomoic acids A-D, see ref 1. (b) For isodomoic acids E and F,
see: Wright, J. L. C.; Falk, M.; McInnes, A. G.; Walter, J. A. Can. J.
Chem. 1990, 68, 22-25. (c) For isodomoic acids G and H, see: Zaman,
L.; Arakawa, O.; Shimosu, A.; Onoue, Y.; Nishio, S.; Nishimura, K.;
Nomoto, K.; Fujita, T. Toxicon 1997, 35, 205-212. (d) For C-5′-epi-
Domoic acid, see: Walter, J. A.; Falk, M.; Wright, J. L. C. Can. J. Chem.
1994, 72, 430-436.
(3) For domoic acid, see: (a) Takemoto, T.; Daigo, K. Chem. Pharm. Bull.
1958, 6, 578-580. (b) Ohfune, Y.; Tomita, M. J. Am. Chem. Soc. 1982,
104, 3511-3513.
(4) For review articles covering kainoids, see: (a) Parsons, A. F. Tetrahedron
1996, 52, 4149-4174. (b) Moloney, M. G. Nat. Prod. Rep. 1998, 15,
205-219. (c) Moloney, M. G. Nat. Prod. Rep. 1999, 16, 485-498.
(5) Biscoe, T. J.; Evans, R. H.; Headley, P. M.; Martin, M. R.; Watkins, J.
C. Br. J. Pharmacol. 1976, 58, 373-382.
(6) Mestel, R. New Scientist 1995, 147, 6.
(7) Todd, E. C. D. J. Food Prot. 1993, 56, 69-83. (b) Costa, P. R.; Rosa,
R.; Sampayo, M. A. M. Mar. Biol. 2004, 144, 971-976. (c) Jeffery, B.;
Barlow, T.; Moizer, K.; Paul, S.; Boyle, C. Food Chem. Toxicol. 2004,
42, 545-557. (d) Costa, L. G.; Guizzetti, M.; Costa-Mallen, P.; Vitalone,
A.; Tita, B. Diet-Brain Connect. 2002, 197-213. (e) Mos, L. EnViron.
Toxicol. Pharmacol. 2001, 9, 79-85. (f) Doble, A. Food Sci. Technol.
2000, 103, 359-372. (g) Nijjar, M. S.; Nijjar, S. S. Food Sci. Technol.
2000, 103, 325-358.
(8) Micheli, L.; Radoi, A.; Guarrina, R.; Massaud, R.; Bala, C.; Moscone,
D.; Palleschi, G. Biosens. Bioelectron. 2004, 20, 190-196. (b) Martins,
J. M. L.; Gago-Martinez, A.; Dabek-Zlotorzynska, E.; Aranda-Rodriguez,
R.; Lawrence, J. F. J. Sep. Sci. 2002, 25, 342-344. (c) Furey, A.; Lehane,
M.; Gillman, M.; Fernandez-Puente, P.; James, K. J. J. Chromatogr., A
2001, 938, 167-174. (d) Garthwaite, I.; Ross, K. M.; Miles, C. O.; Briggs,
L. R.; Towers, N. R.; Borrell, T.; Busby, P. J. AOAC Int. 2001, 84, 1643-
1648. (e) Pineiro, N.; Vaquero, E.; Leao, J. M.; Gago-Martinez, A.;
Vazquez, J. A. R. Chromatographia 2001, 53, S231-S235. (f) James, K.
J.; Gillman, M.; Lehane, M.; Gago-Martinez, A. J. Chromatogr., A 2000,
871, 1-6. (g) Sun, T.; Wong, W. H. J. Agric. Food Chem. 1999, 47,
4678-4681. (h) Kawatsu, K.; Hamano, Y.; Noguchi, T. Toxicon 1999,
37, 1579-1589. (i) Rhodes, L.; Scholin, C.; Garthwaite, I. Nat. Toxins
1998, 6, 105-111. (j) Garthwaite, I.; Ross, K. M.; Miles, C. O.; Hansen,
R. P.; Foster, D.; Wilkins, A. L.; Towers, N. R. Nat. Toxins 1998, 6,
93-104. (k) Kotaki, Y.; Koike, K.; Sato, S.; Ogata, T.; Fukuyo, Y.;
Kodama, M. Toxicon 1999, 37, 677-682.
a Reagents: (i) t-BuLi, -78 °C, Et2O; (ii) MeLi, CuCN, Et2O, -78 to
25 °C; (iii) 7, -78 °C; (iv) HCO2H, reflux, 30 min; (v) Boc2O, Et3N,
DMAP, CH2Cl2, 25 °C, 18 h; (vi) NaIO4, RuCl3, H2O, MeCN, EtOAc, 18
h; (vii) Me3SiCHN2, toluene, MeOH, 20 °C, 5 min; (viii) NaOMe, MeOH,
-78 °C, 1 h; (ix) t-BuPh2SiCl, imid, CH2Cl2, 20 °C, 18 h; (x) m-CPBA
(70%), CH2Cl2, 25 °C, 72 h; (xi) o-NO2C6H4SeCN, Bu3P, THF, 20 °C, 2
h; (xii) H2O2, py, -40 to 25 °C, 12 h; (xiii) i-Bu2AlH, PhMe, THF, -78
°C, 1 h; (xiv) Et3SiH, BF3/OEt2, -78 °C, 2.5 h; (xv) Bu4NF, THF, 25 °C,
2 h; (xvi) Dess-Martin, CH2Cl2, 25 °C, 30 min; (xvii) 18, DBU, LiCl,
MeCN, 25 °C, 1 h; (xviii) LiOH, H2O, THF, 25 °C, 12 h; (xix) CF3CO2H,
CH2Cl2, ∆, 2 h.
(9) Ni, Y.; Amarasinghe, K. K. D.; Ksebati, B.; Montgomery, J. Org. Lett.
2003, 5, 3771-3774.
(10) Baldwin, J. E.; Moloney, M. G.; Parsons, A. F. Tetrahedron 1991, 47,
155-172.
(11) A review of the chemistry of the domoic acid family is in preparation:
Clayden, J.; Read, B.; Hebditch, K. E. Manuscript in preparation.
(12) Clayden, J.; Menet, C. J.; Mansfield, D. J. Chem. Commun. 2002, 38-
39.
(13) Clayden, J.; Menet, C. J.; Tchabanenko, K. Tetrahedron 2002, 58, 4727-
4733. (b) Clayden, J. Total Synthesis of Kainoids by Dearomatizing
Anionic Cyclization. In Strategies and Tactics in Organic Synthesis;
Harmata, M., Ed.; Academic Press: New York, 2004; Vol. 4.
(14) Balderman, D.; Kalir, A. Synthesis 1978, 24-26. (b) Clayden, J.; Menet,
C. J.; Mansfield, D. J. Org. Lett. 2000, 2, 4229-4232. (c) Metallinos, C.;
Nerdinger, S.; Snieckus, V. Org. Lett. 1999, 1, 1183-1186. (d) Metallinos,
C. Synlett 2002, 1556-1557.
(15) Hammerschmidt, F.; Hanninger, A. Chem. Ber. 1995, 128, 823.
(16) Clayden, J.; Tchabanenko, K.; Yasin, S. A.; Turnbull, M. D. Synlett 2001,
302-304.
(17) We now prefer formic acid to trifluoroacetic acid for the removal of cumyl
protecting groups (see ref 14b-d) from amide N.
(18) Carlsen, P. H.; Katsuki, T.; Mart´ın, V. S.; Sharpless, K. B. J. Org. Chem.
1981, 46, 3936-3938. (b) Matsuura, F.; Hamada, Y.; Shioiri, T.
Tetrahedron 1994, 50, 265-274. (c) Mander, L. N.; Williams, C. M.
Tetrahedron 2003, 59, 1105-1136.
(19) We presume that a subtle conformational effect is involved in this reaction;
comparable 6,5-fused cyclohexanones lacking a substituent â to the
carbonyl group (e.g., 10 lacking the RO(CH2)3 group) oxidize without
regioselectivity (see ref 13 and Clayden, J.; Tchabanenko, K. Chem.
Commun. 2000, 317-318). For leading references on stereoelectronic
control in the Baeyer-Villiger reaction, see: Crudden, C. M.; Chen, A.
C.; Calhoun, L. A. Angew. Chem., Int. Ed. 2000, 39, 2852-2855.
(20) Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485-
1486.
Dess-Martin21 oxidation to aldehyde 17, and Horner-Wadsworth-
Emmons olefination. Under Masamune’s conditions,22 17 reacted
with ethyl 2-triethylphosphonopropionate 18 to yield a single
stereoisomer of the trisubstituted alkene 19. Deprotection by
treatment with lithium hydroxide followed by trifluoroacetic acid
yielded, after purification by ion exchange and reverse-phase HPLC,
the target natural product (-)-isodomoic acid C 1, [R]20 ) -30
D
( 10 (c ) 0.02, H2O) [lit.1 [R]20 ) -30 (c ) 0.015, H2O)].
D
1
Comparison of the H and 13C NMR spectra of the product with
those of authentic naturally derived isodomoic acid C23 indicated
an exact match.
Acknowledgment. We are grateful to the EPSRC for a
studentship, to GlaxoSmithKline for support, and to Drs. Michael
Quilliam, Patrick Holland, Chris Miles, Alistair Wilkins, and
Andrew Selwood for helpful discussions and for NMR spectra of
natural (-)-isodomoic acid C.
(21) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
(22) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune,
S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1981, 25, 2183-2186.
(23) Spectra were very kindly provided by Prof. Alistair Wilkins of Waikato
University, Hamilton, New Zealand.
Supporting Information Available: Experimental procedures and
1
characterization of all new compounds. H and 13C NMR spectra of
JA042415G
9
J. AM. CHEM. SOC. VOL. 127, NO. 8, 2005 2413