J. Am. Chem. Soc. 2000, 122, 2657-2658
2657
Scheme 1
Ti-Catalyzed Regio- and Enantioselective Synthesis of
Unsaturated r-Amino Nitriles, Amides, and Acids.
Catalyst Identification through Screening of Parallel
Libraries
James R. Porter, Wolfgang G. Wirschun, Kevin W. Kuntz,
Marc L. Snapper,* and Amir H. Hoveyda*
Table 1. Ti-Catalyzed Enantioselective Addition of Cyanide to
R,â-Unsaturated Aryliminesa
Department of Chemistry, Merkert Chemistry Center
Boston College, Chestnut Hill, Massachusetts 02467
ReceiVed NoVember 29, 1999
Due to the significance of R-amino acids in chemistry and
biology, the search for efficient methods that lead to the formation
of these important compounds in the optically pure form
continues.1 Several procedures have been devised that afford
R-amino acids in high selectivity, but many of these protocols
rely on the use of chiral auxiliaries.2 Other approaches depend
on catalytic enantioselective reduction of dehydroamino acids,
and several chiral hydrogenation catalysts have been disclosed
that deliver optically pure R-amino acids in high yield and
selectivity.3,4 Recently, we reported a Ti-catalyzed process for
the asymmetric cyanide addition to aryl imines, which affords
the derived aryl amino nitriles efficiently and with exceptional
enantiocontrol;5,6 the identity of the optimal catalyst was deter-
mined through synthesis and screening of parallel ligand libraries.7
Subsequent hydrolysis of the nitrile and simultaneous deprotection
of the amine unit afford the desired optically pure aryl R-amino
acids. These protocols thus allow access to R-amino acids that
are not available by the catalytic asymmetric hydrogenation
reaction.
a Conditions: 10 mol % Ti(i-OPr)4, 10 mol % chiral ligand, 2 equiv
TMSCN, toluene, 24 h; hexanes workup (see Supporting Information).
Entries 1-2 at +4 °C, entries 3-4 at -20 °C. 1.5 equiv of i-PrOH
added over 20 (entries 1-2) or 10 h (entries 3-4). b Determined by
analysis of the 1H NMR (400 MHz) of the upurified reaction mixture.
c Determined by chiral HPLC analysis in comparison with authentic
materials (Chiralcel OD, entries 1-3; Chiralpak AD, entry 4). d Purified
by recrystallization.
After these studies we began to examine the catalytic asym-
metric cyanide addition to R,â-unsaturated imines (Scheme 1).
We reasoned that if these reactions proceed regioselectively (1,2-
vs 1,4-addition) and enantioselectively, an efficient route to
various unsaturated R-amino acids would be at hand and the
generality of the catalytic asymmetric Strecker process would be
significantly enhanced. The following considerations provided us
with additional impetus: (1) â,γ-Unsaturated R-amino acids have
biologically significant properties (e.g., antibiotic8 and enzyme
inhibitory9 properties). (2) â,γ-Unsaturated amino acids are not
easily accessed by catalytic hydrogenation.10 (3) The resident
alkene unit in the intermediate amino nitrile may in principle be
stereoselectively functionalized en route to more complex R-amino
acids.
Due to the results of our studies regarding the addition of
cyanide to aryl- and alkylimines,5 we selected Ti(Oi-Pr)4 as the
metal salt of choice and diphenylmethylene as the amine
protecting group. Tripeptide ligand libraries were then prepared
and the reaction of unsaturated imine 1 with TMSCN was
screened in the presence of Ti(Oi-Pr)4 (10 mol % ligand and metal
complex). Screening of a total of approximately 60 peptidic
ligands11 indicates that the most selective ligand (3) is the one
(1) (a) Williams, R. M. Synthesis of Optically ActiVe R-Amino Acids;
Pergamon: Oxford, 1989. (b) O’Donnell, M. J., Ed. Tetrahedron Symposia
in Print; Tetrahedron: Oxford, 1988; Vol. 44, 5253-5614. (c) Duthaler, R.
O. Tetrahedron 1994, 50, 1539-1650.
(2) For representative recent examples, see: (a) Davis, F. A.; Portonovo,
P. S.; Ready, R. E.; Chiu, Y. J. Org. Chem. 1996, 61, 440-441. (b) Zhu, J.;
Deur, C.; Hegedus, L. S. J. Org. Chem. 1997, 62, 7704-7710. (c) Myers, A.
G.; Gleason, J. L.; Yoon, T.; Kung, D. W. J. Am. Chem. Soc. 1997, 119,
656-673.
(3) Burk, M. J.; Kalberg, C. S.; Pizzano, S. J. Am. Chem. Soc. 1998, 120,
4345-4353 and references therein.
(4) For representative recent non-hydrogenation catalytic asymmetric
methods to R-amino acids, see: (a) O’Donnell, M. J.; Delgado, F.; Hostettler,
C.; Scwesinger, R. Tetrahedron Lett. 1998, 39, 8775-8778. (b) Ferraris, D.;
Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 4548-
4549. (c) Corey, E. J.; Noe, M. C.; Xu, F. Tetrahedron Lett. 1998, 39, 5347-
5350. (d) Lygo, B.; Crosby, J.; Peterson, J. A. Tetrahedron Lett. 1999, 40,
8671-8674. (e) Fang, X.; Johannsen, M.; Yao, S.; Gathergood, N.; Hazel, R.
G.; Jorgensen, K. A. J. Org. Chem. 1999, 64, 4844-4849.
(5) Krueger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Wirschun, W. G.;
Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 1999,
121, 4284-4285.
(6) For related studies on catalytic asymmetric CN addition to imines,
see: (a) Iyer, M. S.; Gigstad, K. M.; Namdev, N. D.; Lipton, M. J. Am. Chem.
Soc. 1996, 118, 4910-4911. (b) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem.
Soc. 1998, 120, 4901-4902. (c) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem.
Soc. 1998, 120, 5315-5316. (d) Ishitani, H.; Komiyama, S.; Kobayashi, S.
Angew. Chem., Int. Ed. Engl. 1998, 37, 3186-3188. (e) Corey, E. J.; Grogan,
M. J. Org. Lett. 1999, 1, 157-160.
(7) For initial reports on screening of parallel peptide-based libraries, see:
(a) Cole, B. M.; Shimizu, K. D.; Krueger, C. A.; Harrity, J. P.; Snapper, M.
L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1668-1671. (b)
Shimizu, K. D.; Cole, B. M.; Krueger, C. A.; Kuntz, K. W.; Snapper, M. L.;
Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1997, 36, 1704-1707. (c)
Shimizu, K. D.; Snapper, M. L.; Hoveyda, A. H. Chem. Eur. J. 1998, 4, 1885-
1889.
(8) For example, see: Huroda, Y.; Okuhara, M.; Goto, T.; Kohaska, M.;
Aoki, H.; Imanaka, H. J. Antibiotics 1980, 33, 132-136.
(9) For example, see: Girodeau, J. M.; Agouridas, C.; Masson, M.; Pineau,
R.; Le Goffic, F. J. Med. Chem. 1986, 29, 1023-1030.
(10) For Rh-catalyzed hydrogenation of R,â,γ,δ-unsaturated acetamide
esters to obtain allylglycines, see: Burk, M. J.; Bedingfield, K. M.; Kiesman,
W. F.; Allen, J. G. Tetrahedron Lett. 1999, 40, 3093-3096 and references
therein. Presumably, the site-selective hydrogenation is due to the coordination
between the Rh-based catalyst and the acetamide directing group.
(11) See the Supporting Information for details on the identity of the ligands
screened. Since the screening for entries 1 of Tables 1 and 2, in addition to
those reported in ref 5, indicated that t-Leu and Thr(t-Bu) are optimal AA1
and AA2 units, respectively, only the Schiff base libraries were screened for
the remaining substrates.
10.1021/ja994121e CCC: $19.00 © 2000 American Chemical Society
Published on Web 03/07/2000