1788
Scheme 3. Synthesis of key intermediate for tachykinin receptor antagonist
morpholine analogues has been achieved. The enantiomerically pure (R)-2 prepared by the above method
has been successfully incorporated into a number of tachykinin receptor antagonists.
References
1. Nishi, T.; Fukazawa, T.; Kurata, H.; Ishibashi, K.; Nakajima, K.; Yamaguchi, T.; Itoh, K. Sankyo Co., Ltd, 1996; EP-776893-
A1.
2. Nishi, T.; Ishibashi, K.; Nakajima, K.; Iio, Y.; Fukazawa, T. Tetrahedron: Asymmetry 1998, 9, 3251.
3. Kato, S.; Morie, T.; Harada, H.; Yoshida, N.; Matsumoto, J. Chem. Pharm. Bull. 1992, 40, 652. Moussa, G. E. M.; Basyouni,
M. N.; Shaban, M. E. Indian J. Chem., Sect. B 1980 19, 798. Loftus, F. Synth. Commun. 1980, 10, 59. Buriks, R. S.; Lovett,
E. G. J. Org. Chem. 1987, 52, 23. Bettoni, G.; Franchini, C.; Perrone, R.; Tortorella, V. Tetrahedron 1980, 36, 409. Firestone,
R. A.; Pisano, J. M.; Falck, J. R.; McPhaul, M. M.; Krieger, M. J. Med. Chem. 1984, 27, 1037. Jinbo, Y.; Kondo, H.; Taguchi,
M.; Inoue, Y.; Sakamoto, F.; Tsukamoto, G. J. Med. Chem. 1994, 37, 2791. D’Arrigo, P.; Lattanzio, M.; Fantoni, G. P.; Servi,
S. Tetrahedron: Asymmetry 1998, 9, 4021.
4. Berg, S.; Larsson, L.-G.; Renyi, L.; Ross, S. B.; Thorberg, S.-O.; Thorell-Svantesson, G. J. Med. Chem. 1998, 41, 1934.
Morie, T.; Kato, S.; Harada, H.; Matsumoto, J. Heterocycles 1994, 38, 1033. Melloni, P.; Della T. A.; Lazzari, E.; Mazzini,
G.; Meroni, M. Tetrahedron 1985, 41, 1393. Kashima, C.; Harada, K. J. Chem. Soc., Perkin Trans. 1 1988, 1521. Balsamo,
A.; Ceccarelli, G.; Crotti, P.; Macchia, B.; Macchia, F.; Tognetti, P. Eur. J. Med. Chem. Chim. Ther. 1982, 17, 471. Clark, R.
D. J. Heterocycl. Chem. 1983, 20, 1393.
5. Bartlett, P. A. Tetrahedron 1980, 36, 2. Cardillo, G.; Orena, M. Tetrahedron 1990, 46, 3321.
6. All new compounds are fully characterized by their spectroscopic and analytical data.
7. Typical procedure: Preparation of 14c (Table 1, entry 3): A round-bottomed flask was charged with α-methylstyrene (71 mg,
0.60 mmol), N-Boc-aminoethanol (145 mg, 0.72 mmol), and CH3CN (4.0 mL). NIS (162 mg, 0.72 mmol) was successively
added. The reaction mixture was vigorously stirred at room temperature for 2 h. The solution was poured into brine and
extracted with EtOAc. The combined EtOAc layer was washed with water and dried over MgSO4. The solvent was removed
in vacuo, and the residue was purified by preparative TLC (n-hexane:EtOAc 5:1) and yielded as a colorless oil (234 mg,
96% yield): FT-IR (neat) νmax 3430, 3363, 2978, 2933, 1714, 1506, 1448, 1392, 1366, 1273, 1251, 1170, 1093, 1079, 764,
1
401 cm−1; H NMR (400 MHz, CDCl3) δ 7.41–7.24 (m, 5H), 5.03 (bs, 1H), 3.53 (d, J=10.4 Hz, 1H), 3.45 (d, J=10.4 Hz,
1H), 3.38–3.17 (m, 4H), 1.71 (s, 3H), 1.45 (s, 9H); HRMS (FAB) calcd for C16H25O3NI (M+H+) 406.0879, found 406.0872.
Preparation of 15c (Table 2, entry 3): A round-bottomed flask was charged with 14c (234 mg, 0.56 mmol) and DMF (4.0
mL). NaH (30 mg, ca. 60% mineral oil suspension, 0.75 mmol) was successively added. The reaction mixture was vigorously
stirred at room temperature for 3 h. The solution was poured into brine and extracted with EtOAc. The combined EtOAc
layer was washed with water and dried over MgSO4. After evaporation of the solvent, the desired product was purified by
preparative TLC (n-hexane:AcOEt 4:1) and yielded as a colorless oil (145 mg, 91% yield): FT-IR (neat) νmax 2976, 2929,
2869, 1699, 1449, 1425, 1366, 1281, 1242, 1172, 1137, 1095, 868, 764, 701 cm−1; 1H NMR (400 MHz, CDCl3) δ 7.53–7.21
(m, 5H), 4.40–4.27 (m, 1H), 3.73–3.44 (m, 3H), 3.28–3.10 (m, 2H), 1.51 (bs, 3H), 1.41 (bs, 9H); HRMS (EI) calcd for
C16H23O3N (M+) 277.1674, found 277.1679.