10.1002/anie.201814660
Angewandte Chemie International Edition
COMMUNICATION
reactive functionalities can also be incorporated into the
carboxylic acid unit, such as thioether (1f), esters (1k), nitro (1l),
and nitrile (1c, 1m) groups.
We thank NSERC, the Canadian Foundation for Innovation
(CFI), and the FQRNT supported Centre for Green Chemistry
and Catalysis for funding this research
In addition to variation of the carboxylic acid, aroyl triflates
are exceptional electrophiles that offer the ability to functionalize
a wide range electronically diverse arenes. This includes
electron rich benzene derivatives, which react at room
temperature (1u-1cc), and also more deactivated arenes such
as 1,3-dichlorobenzene (1dd) and 1,3,5-trifluorobenzene (1ee)
at elevated temperatures (100 °C). The latter are typically
sluggish in Friedel-Crafts acylation chemistry. Heterocycles can
also be easily functionalized to heteroaryl ketones using this
methodology. Examples include thiophenes (1ll), furans (1jj),
benzothiophene (1kk) and pyrroles (1ii). A feature of this
transformation is its ability to generate ketones directly from
carboxylic acids without multiple synthetic steps, or the use of
high energy, caustic and strongly acidic reagents, and instead
from compounds that are each relatively benign and bench
stable.19 As a result, it is also possible to perform Friedel-Crafts
acylations under basic conditions in the presence of sensitive
functionalities, such as with N-tosyl aniline. The latter undergoes
deprotection under acidic conditions to form various products,20
but is cleanly acylated with the carbonylative reaction (1aa).
Finally, we have explored the application of this chemistry to the
targeted synthesis of Oxybenzone, a UV active reagent found in
a broad array of personal care products, sunscreens, and
plastics as a stablizer.21 In contrast to its classical synthesis from
high energy acid chlorides in the presence of Lewis acid
catalysts (e.g. AlCl3), which can lead to demethylation, 1ll can
be formed directly from benzoic acid using this protocol in high
overall yield.22
Keywords: Carbonylation • Acylation • Decarboxylation•
Iodination • Ketones
Conflict of Interest
The Authors declare no conflict of interest.
[1]
a) A. R. Katritzky, O. Meth-Kohn, C. W. Rees in Comprehensive
Organic Group Transformation, Vol. 5 Pergamon Press: Oxford, U.K.,
1995, pp. 1-229. b) A. El-Faham, F. Albericio, Chem. Rev. 2011, 111,
6557-6602. c) G. Sartori, R. Maggi, Advances in Friedel-Crafts
acylation reactions : catalytic and green processes, CRC Press, Boca
Raton, 2010. d) R. K. Dieter, Tetrahedron 1999, 55, 4177-4236
S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451-3479.
B. L. Deopura in Polyesters and Polyamides; B. L. Deopura, R.
Alagirusamy, M. Joshi, B. Gupta, Eds, Woodhead Publishing, Boca
Raton, 2008.
[2]
[3]
[4]
[5]
[6]
[7]
[8]
a) J. R. Dunetz, J. Magano, G. A. Weisenburger, Org. Process Res.
Dev. 2016, 20, 140-177. b) E. Valeur, M. Bradley, Chem. Soc. Rev.
2009, 38, 606-631.
S. G. Nelson Science of Synthesis: Compounds with Four and Three
Carbon Heteroatom Bonds, Vol. 20a (Ed.: J. S. Panek), Thieme,
Stuttgart, 2006.
D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. J. L.
Leazer, R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A.
Wells, A. Zaks, T. Y. Zhang, Green Chem. 2007, 9, 411-420.
a) M. Beller, X. F. Wu in Transition Metal Catalyzed Carbonylations –
Carbonylative Activation of C–X Bonds, Springe, Berlin, 2013. b) Y. Li,
Y. Hu, X.-F. Wu, Chem. Soc. Rev. 2018, 47, 172-194.
a) J. S. Quesnel, B. A. Arndtsen, J. Am. Chem. Soc. 2013, 135, 16841-
16844. b) J. S. Quesnel, L. V. Kayser, A. Fabrikant, B. A. Arndtsen,
Chem. Eur. J. 2015, 21, 9550-9555. c) J. Tjutrins, B. A. Arndtsen, J.
Am. Chem. Soc. 2015, 137, 12050-12054. d) R. Garrison Kinney, J.
Tjutrins, G. M. Torres, N. J. Liu, O. Kulkarni, B. A. Arndtsen, Nat.
Chem. 2018, 10, 193-199. e) T. A. Cernak, T. H. Lambert, J. Am.
Chem. Soc. 2009, 131, 3124-3125. For metathesis routes to acid
chlorides: f) X. Fang, B. Cacherat, B. Morandi, Nat. Chem. 2017, 9,
1105. g) M. De La Higuera Macias, B. A. Arndtsen, J. Am. Chem. Soc.
2018, 140, 10140-10144. h) Y. H. Lee, B. Morandi, Nat. Chem. 2018,
10, 1016-1022. i) D. R. Gauthier, N. R. Rivera, H. Yang, D. M. Schultz,
C. S. Shultz, J. Am. Chem. Soc. 2018, 140, 15596-15600.
Scheme 1. Application to the synthesis of Oxybenzone from benzoic acid.
In conclusion, we have described a general approach to
form aroyl triflate electrophiles directly from carboxylic acids.
This proceeds via a carbon monoxide mediated deoxygenation,
wherein carbon monoxide is postulated to intercept the
iodination intermediate of the Hunsdiecker reaction. Overall, this
offers a method to generate a diverse array of aroyl electrophiles
from carboxylic acids under mild conditions with reagents that
are each available and functional group compatible, and could
prove of utility in situations where working with highly Lewis or
Bronsted acidic reagents is undesirable. Studies towards
exploiting this approach to create alternative classes of
carbonyl-containing products are currently underway.
[9]
a) R. Shang, in New Carbon–Carbon Coupling Reactions Based on
Decarboxylation and Iron-Catalyzed C–H Activation, Springer
Singapore, Singapore, 2017, pp. 3-47. b) N. Rodríguez, L. J. Goossen,
Chem. Soc. Rev. 2011, 40, 5030-5048. c) Y. Wei, P. Hu, M. Zhang, W.
Su, Chem. Rev. 2017, 117, 8864-8907. d) J. Xuan, Z.-G. Zhang, W.-J.
Xiao, Angew. Chem. Int. Ed. 2015, 54, 15632-15641. For
representative recent examples: e) Y. Liang, X. Zhang, D. W. C.
MacMillan, Nature 2018, 559, 83-88. f) C. Li, J. Wang, L. M. Barton, S.
Yu, M. Tian, D. S. Peters, M. Kumar, A. W. Yu, K. A. Johnson, A. K.
Chatterjee, M. Yan, P. S. Baran, Science 2017, 7355. g) C. P.
Johnston, R. T. Smith, S. Allmendinger, D. W. C. MacMillan, Nature
2016, 536, 322. h) X. Sun, J. Chen, T. Ritter, Nat. Chem. 2018, 10,
1229-1233. i) W. Zhao, R. P. Wurz, J. C. Peters, G. C. Fu, J. Am.
Chem. Soc. 2017, 139, 12153-12156.
[10] For examples of coupling of alkynyl carboxylic acids:. a) J. Hwang, J.
Choi, K. Park, W. Kim, K. H. Song, S. Lee, Eur. J. Org. Chem. 2015,
2235-2243; b) C.-L. Li, W.-Q. Zhang, X. Qi, J.-B. Peng, X.-F. Wu, J.
Acknowledgements
This article is protected by copyright. All rights reserved.