Inorg. Chem. 2000, 39, 2699-2702
2699
Chart 1
Self-Association in Gold Chemistry: A
Tetragold(I) Complex Linked by Both Aurophilic
and Hydrogen Bonding
William J. Hunks, Michael C. Jennings, and
Richard J. Puddephatt*
Department of Chemistry, University of Western Ontario,
London, Ontario, N6A 5B7, Canada
ReceiVed December 29, 1999
Introduction
The supramolecular chemistry of gold(I) complexes has
become an intriguing subject, because many d10 gold(I) com-
pounds display interesting photochemistry that may be depend-
ent on the state of aggregation and that has potential applications
in electronic, optical, or sensing devices.1 Self-assembly of gold-
(I) compounds may be aided by the existence of Au‚‚‚Au
aurophilic attractions, which may have a strength comparable
to hydrogen bonding (7-11 kcal/mol).2 These interactions have
a profound influence on the properties, structures and conforma-
tions of gold complexes.3,4 Theory suggests that these Au‚‚‚Au
attractions arise from relativistic London forces, with relative
strength predicted to increase with the softness of the ligands,5
and this is supported by the observation that, in the series of
complexes Me2PhPAuX, the Au‚‚‚Au distances decrease in the
order (X ) Cl > Br > I).6 Some developments that are relevant
to the present work are described below.
forces of Au‚‚‚Au and hydrogen bonding have resulted in the
assembly of dimers, tetramers, chains, and two-dimensional
networks such as C - E.10,11 Several gold(I) complexes of the
P-donor ligands phosphinite, R2(O)P-, and phosphite, (RO)2(O)P-,
have been synthesized by fortuitous oxidation or hydrolysis of
precursor molecules.12 Complexes containing the S-Au-P
group have been used in gold drugs for the treatment of
rheumatoid arthritis, so water-stable complexes of this kind have
added interest.13 Many gold(I) drugs used in chrysotherapy are
thought to be oligomers with sulfur atoms in bridging posi-
tions,1,14 and so there is increasing interest in analogous gold
Several complexes of the form [{RS(AuL)2}2]2+, with L )
a tertiary phosphine ligand, assemble into centrosymmetric six-
membered dicationic rings through short Au‚‚‚Au contacts with
thiolate ligands bridging opposite edges above and below the
molecular plane, forming a V/ inverted-V configuration (A,
Chart 1).7 Furthermore, difunctional alkylthiols have been used
to link analogous cationic six-membered rings together to
generate extended structures,8 and eight-membered rings, with
S4Au4 cores B, were constructed using the dithiols 3,4-
dimercaptotoluene and benzene-1,2-dithiol.9 The complementary
* Author to whom all correspondence should be addressed.
(1) Forward, J. M.; Fackler, J. P., Jr.; Assefa, Z. in Optoelectronic
Properties of Inorganic Compounds; Roundhill, D. M., Fackler, J. P.,
Jr. Eds.; Plenum Press: New York, 1999; pp 195-239.
(2) For reviews see (a) Schmidbaur, H., Ed. Gold: Progress in Chemistry,
Biochemistry and Technology; Wiley: New York, 1999. (b) Pud-
dephatt, R. J. In ComprehensiVe Coordination Chemistry; Wilkinson,
G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford,
1987, Vol. 5, pp 861-923. (c) Schmidbaur, H. Gold Bull. 1990, 23,
11.
(3) (a) Pathaneni, S. S.; Desiraju, G. R. J. Chem. Soc., Dalton Trans.
1993, 319. (b) Schmidbaur, H.; Graf, W.; Mu¨ller, G. Angew. Chem.,
Int. Ed. Engl. 1988, 27, 417. (c) Payne, N. C.; Ramachandran, R.;
Puddephatt, R. J. Can. J. Chem. 1995, 73, 6. (d) Schmidbaur, H.;
Reber, G.; Schier, A.; Wagner, F. E.; Mu¨ller, G. Inorg. Chim. Acta
1988, 147, 143.
(8) (a) Lo´pez-de-Luzuriaga, J.; Sladek, A.; Schneider, W.; Schmidbaur,
H. Chem. Ber. 1997, 130, 641. (b) Sladek, A.; Schmidbaur, H. Inorg.
Chem. 1996, 35, 3268.
(9) (a) Da´vila, R. M.; Elduque, A.; Grant, T.; Staples, R. J.; Fackler, J.
P., Jr. Inorg. Chem. 1993, 32, 1749. (b) Nakamoto, M.; Schier, A.;
Schmidbaur, H. J. Chem. Soc., Dalton Trans. 1993, 1347.
(10) (a) Schneider, W.; Bauer, A.; Schmidbaur, H. Organometallics 1996,
15, 5445; J. Chem. Soc., Dalton Trans. 1997, 415. (b) Mingos, D. M.
P.; Yau, J.; Menzer, S.; Williams, D. J. J. Chem. Soc., Dalton Trans.
1995, 319. (c) Vicente, J.; Chicote, M. T.; Abrisqueta, M. D.; Guerrero,
R.; Jones, P. G. Angew. Chem., Int. Ed. Engl. 1997, 36, 1203. (d)
Shi, J. C.; Kang, B. S.; Mak, T. C. W. J. Chem. Soc., Dalton Trans.
1997, 2171. (e) Hollatz, C.; Schier, A.; Schmidbaur, H. Z. Naturforsch.
1999, 54b, 30. (f) Hollatz, C.; Schier, A.; Schmidbaur, H. Inorg. Chem.
Commun. 1998, 1, 115. (g) Tzeng, B.-C.; Schier, A.; Schmidbaur, H.
Inorg. Chem. 1999, 38, 3978. (h) Jones, P. G.; Ahrens, B. New J.
Chem. 1998, 1041.
(11) (a) Hollatz, C.; Schier, A.; Riede, J.; Schmidbaur, H. J. Chem. Soc.,
Dalton Trans. 1999, 111. (b) Hollatz, C.; Schier, A.; Schmidbaur, H.
J. Am. Chem. Soc. 1997, 119, 8115.
(12) (a) Hollatz, C.; Schier, A.; Schmidbaur, H. Chem. Ber. 1997, 130,
1333. (b) Vicente, J.; Chicote, M. T.; Jones, P. G. Inorg. Chem. 1993,
32, 4960. (c) Schmidbaur, H.; Aly, A. M. Angew. Chem., Int. Ed.
Engl. 1980, 19, 71. (d) Schmidbaur, H.; Aly, A. M.; Schubert, U.
Angew. Chem., Int. Ed. Engl. 1978, 17, 846.
(4) (a) Schmidbaur, H. Chem. Soc. ReV. 1995, 24, 391. (b) Mingos, D.
M. P. J. Chem. Soc., Dalton Trans. 1996, 561.
(5) (a) Pyykko¨, P.; Li, J.; Runeberg, N. Chem. Phys. Lett. 1994, 218, 133.
(b) Li, J.; Pyykko¨, P. Chem. Phys. Lett. 1992, 197, 586.
(6) Toronto, D. V.; Weissbart, B.; Tinti, D. S.; Balch, A. L. Inorg. Chem.
1996, 35, 2484.
(7) (a) Sladek, A.; Schneider, W.; Angermaier, K.; Bauer, A.; Schmidbaur,
H. Z. Naturforsch. 1996, 51b, 765. (b) Sladek, A.; Angermaier, K.;
Schmidbaur, H. J. Chem. Soc., Chem. Commun. 1996, 1959. (c)
Sladek, A.; Schmidbaur, H. Chem. Ber. 1995, 128, 907. (d) Wang,
S.; Fackler, J. P., Jr. Inorg. Chem. 1990, 29, 4404.
(13) Shaw. C. F., III; Isab, A. A.; Hoeschele, J. D.; Starich, M.; Locke, J.;
Schulteis, P.; Xiao, J. J. Am. Chem. Soc. 1994, 116, 2254.
10.1021/ic991497k CCC: $19.00 © 2000 American Chemical Society
Published on Web 05/20/2000