1494 Bull. Chem. Soc. Jpn., 74, No. 8 (2001)
Divergent Synthesis of syn- and anti-Propionate
with MeCN, and washed with sat. NaHCO3, followed by sat.
NaCl. The solution was dried over anhydrous MgSO4 and after
filtration the solvent was evaporated. The residue was purified by
flash column chromatography (2.5% AcOEt in hexane) to afford
16a (86% yield). Syn : anti ratio was determined on the basis of
NMR (CDCl3) δ 12.6, 17.5, 17.6, 32.5, 32.8, 41.4, 67.5, 80.5,
173.9.
This work was supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Science, Sports and
Culture.
NMR data. [α]D24 −37.09 (c 0.62%, CHCl3). IR (neat) 1739 cm−1
.
1H NMR (CDCl3) δ 0.86 (d, J = 6.6 Hz, 3H), 0.92 (d, J = 6.6 Hz,
3H), 1.10 (d, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.29 (s,
3H), 1.30 (s, 3H), 1.52–1.69 (m, 3H), 2.28 (dq, J = 7.1, 7.1 Hz,
1H), 3.41 (dt, J = 7.1, 9.3 Hz, 1H), 3.93 (dt, J = 5.8, 9.5 Hz, 1H),
4.14 (m, 2H). 13C NMR (CDCl3) δ 12.5, 14.2, 17.6, 18.7, 24.1,
24.2, 32.9, 33.9, 45.6, 60.2, 68.5, 71.6, 100.5, 174.8. Found: C,
64.98; H, 10.21%. Calcd for C14H26O4: C, 65.09; H, 10.14%.
References
1
Enantioselective syntheses of syn-propionate aldol ad-
ducts: a) C. H. Heathcock, M. C. Pirrung, C. T. Buse, J. P. Hagen,
S. D.Young, and J. E. Sohn, J. Am. Chem. Soc., 101, 7077 (1979).
b) S. Masamune, W. Choy, F. A. J. Kerdesky, and B. Imperiali, J.
Am. Chem. Soc., 103, 1566 (1981). c) D. A. Evans and L. R.
McGee, J. Am. Chem. Soc., 103, 2876 (1981). d) D. A. Evans, J.
Bartroli, and T. L. Shih, J. Am. Chem. Soc., 103, 2127 (1981). e)
C. L. Hsiao, L. Liu, and M. J. Miller, J. Org. Chem., 52, 2201
(1987). f) E. J. Corey, R. Imwinkelried, S. Pikul, and Y. B. Xiang,
J. Am. Chem. Soc., 111, 5493 (1989). g) W. Oppolzer, J. Blagg, I.
Rodriguez, and E. Walther, J. Am. Chem. Soc., 112, 2767 (1990).
h) S. Kobayashi, H. Uchiro,Y. Fujishita, I. Shiina, and T.
Mukaiyama, J. Am. Chem. Soc., 113, 4247 (1991). i) W. Oppolzer
and P. Lienard, Tetrahedron Lett., 34, 4321 (1993). j) T. H. Yan,
H.-C. Lee, and C.-W. Tan, Tetrahedron Lett., 34, 3559 (1993). k)
S. G. Davis, G. J.-M. Doisneau, J. C. Prodger, and H. J. Sanganee,
Tetrahedron Lett., 35, 2373 (1994). l) J. B. Goh, B. R. Lagu, J.
Wurster, and D. C. Liotta, Tetrahedron Lett., 35, 6029 (1994). m)
R. K. Boeckman, A. T. Johnson, and R. A. Musselman, Tetrahe-
dron Lett., 35, 8521 (1994). n) T. Miyake, M. Seki, Y. Nakamura,
and H. Ohmizu, Tetrahedron Lett., 37, 3129 (1996). Enantioselec-
tive syntheses of anti-propionate aldol adducts: a) A. I. Meyers
and Y. Yamamoto, Tetrahedron, 40, 2309 (1984). b) C. Gennari,
A. Bernardi, L. Colombo, and C. Scolastico, J. Am. Chem. Soc.,
107, 5812 (1985). c) K. Narasaka and T. Miwa, Chem. Lett.,
1985, 1217. d) W. Oppolzer, Tetrahedron, 43, 1969 (1987). e) A.
G. Myers and K. L. Widdowson, J. Am. Chem. Soc., 112, 9672
(1990). f) E. J. Corey and S. S. Kim, J. Am. Chem. Soc., 112,
4976 (1990). g) H. Danda, M. M. Hansen, and C. H. Heathcock,
J. Org. Chem., 55, 173 (1990). h) M. A. Walker and C. H.
Heathcock, J. Org. Chem., 56, 5747 (1990). i) W. Oppolzer, C.
Strarkemann, I. Rodrigenz, and G. Bernardinelli, Tetrahedron
Lett., 32, 61 (1991). Reactions in the above literatures are some-
times stereodivergent by modifying the reaction conditions.
Ethyl
heptanoate (16b). [α]D24 +37.0 (c 0.62%, CHCl3). IR (neat)
1738 cm−1 1H NMR (CDCl3) δ 0.86 (d, J = 6.6 Hz, 3H), 0.92 (d,
(2R,3R,5R)-3,5-Isopropylidenedioxy-2,6-dimethyl-
.
J = 6.6 Hz, 3H), 1.10 (d, J = 6.8 Hz, 3H), 1.25 (t, J = 7.1 Hz,
3H), 1.29 (s, 3H), 1.30 (s, 3H), 1.52–1.69 (m, 3H), 2.48 (dq, J =
7.1, 7.3 Hz, 1H), 3.41 (dt, J = 6.4, 9.0 Hz, 1H), 3.94 (dt, J = 6.1,
9.3 Hz, 1H), 4.14 (m, 2H). 13C NMR (CDCl3) δ 12.5, 14.2, 17.6,
18.7, 24.1, 24.2, 32.9, 33.9, 45.6, 60.2, 68.4, 71.5, 100.5, 174.7.
Ethyl (2R,3R,5S)-3,5-Isopropylidenedioxy-2,6-dimethylhep-
tanoate (16c). [α]D24 −14.2 (c 0.42%, CHCl3). IR (neat) 1739
cm−1 1H NMR (CDCl3) δ 0.87 (d, J = 6.8 Hz, 3H), 0.91 (d, J =
.
6.6 Hz, 3H), 1.10 (d, J = 7.1 Hz, 3H), 1.12 (dt, J = 11.7, 12.0 Hz,
1H), 1.25 (t, J = 7.1 Hz, 3H), 1.34 (s, 3H), 1.39 (s, 3H), 1.49 (dt, J
= 2.2, 12.4 Hz, 1H), 1.58–1.66 (m, 1H), 2.48 (dq, J = 7.3, 7.5 Hz,
1H), 3.50 (ddd, J = 2.2, 6.6, 11.5 Hz, 1H), 4.01 (ddd, J = 2.4, 8.3,
11.5 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H). 13C NMR (CDCl3) δ 12.3,
14.2, 17.6, 18.3, 19.6, 30.0, 30.1, 33.0, 45.6, 60.2, 70.9, 73.7,
98.3, 174.8.
Ethyl (2S,3S,5R)-3,5-Isopropylidenedioxy-2,6-dimethylhep-
tanoate (16d). [α]D24 +13.9 (c 0.62%, CHCl3). IR (neat) 1738
cm−1 1H NMR (CDCl3) δ 0.87 (d, J = 6.8 Hz, 3H), 0.91 (d, J =
.
6.0 Hz, 3H), 1.10 (d, J = 7.1 Hz, 3H), 1.12 (dt, J = 11.7, 12.0 Hz,
1H), 1.25 (t, J = 7.1 Hz, 3H), 1.34 (s, 3H), 1.39 (s, 3H), 1.49 (dt, J
= 2.2, 12.4 Hz, 1H), 1.58–1.66 (m, 1H), 2.48 (dq, J = 7.1, 7.3 Hz,
1H), 3.50 (ddd, J = 2.1, 6.6, 11.2 Hz, 1H), 4.01 (ddd, J = 2.4, 8.3,
11.5 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H). 13C NMR (CDCl3) δ 12.3,
14.2, 17.6, 18.3, 19.6, 30.0, 30.1, 33.0, 45.6, 60.2, 70.9, 73.7,
98.3, 174.8.
Lactone 17. Under an argon atmosphere, to a stirred solution
of 16a (30 mg, 0.11 mmol) in dry MeOH (3 mL) at room temper-
ature was added PTSA (10 mg); the mixture was stirred for 12 h at
the same temperature. The reaction was quenched by the slow ad-
dition of water (5 mL), extracted with ether, washed with sat.
NaCl, and dried over anhydrous MgSO4. After the solvent was
evaporated, the residue was purified by flash column chromatogra-
phy (20% AcOEt in hexane) to afford lactone (89% yield). 1H
NMR (CDCl3) δ 0.98 (d, J = 6.8 Hz, 3H), 1.02 (d, J = 6.8 Hz,
3H), 1.29 (d, J = 7.1 Hz, 3H), 1.70 (ddd, J = 3.9, 11.5, 15.1 Hz,
1H), 1.79 (d, J = 3.9 Hz, 1H), 1.86–1.95 (m, 1H), 2.35 (ddd, J =
4.2, 8.0, 14.9 Hz, 1H), 2.69 (dq, J = 4.4, 7.1 Hz, 1H), 3.97 (ddd, J
= 4.2, 6.1, 11.0 Hz, 1H), 4.29 (dd, J = 3.6, 7.6 Hz, 1H). 13C
NMR (CDCl3) δ 10.9, 17.8, 17.8, 32.2, 34.7, 40.2, 67.7, 80.3,
173.9.
2
K. Ishihara, “Chiral B(ꢀ) Lewis Acids,” in “Lewis Acids in
Organic Synthesis,” ed by H. Yamamoto, Wiley-VCH, Weinheim
(2000), Chap. 5, pp. 135–189.
3
R. E. Gawley and J. Aubé, “Principles of Asymmetric Syn-
thesis,” Pergamon, Amsterdam (1996). See: a) K.Furuta, T.
Maruyama, and H. Yamamoto, Synlett. 1991, 439. b) References
in Ref. 4. c) E. R. Parmee, Y. Hong, O. Tempkin, and S.
Masamune, Tetrahedron Lett., 33, 1729 (1992).
4
a) S.-i. Kiyooka, Y. Kaneko, M. Komura, H. Matsuo, and
M. Nakano, J. Org. Chem., 56, 2276 (1991). b) S.-i. Kiyooka, Y.
Kaneko, and K. Kume, Tetrahedron Lett., 33, 4927 (1992). c) S.-i.
Kiyooka, Y. Kido, and Y. Kaneko, Tetrahedron Lett., 35, 5243
(1994). d) Y. Kaneko, T. Matsuo, and S.-i. Kiyooka, Tetrahedron
Lett., 35, 4107 (1994). e) Y. Kaneko and S.-i. Kiyooka, Mem. Fac.
Sci. Kochi Univ. Ser (c), 15, 9 (1994). f) S.-i. Kiyooka, Y. Kaneko,
Y. Harada, and T. Matsuo, Tetrahedron Lett., 36, 2821 (1995). g)
S.-i. Kiyooka and M. A. Hena, Tetrahedron: Asymmetry, 7, 2181
(1996). h) S.-i. Kiyooka, H. Kira, and M. A. Hena, Tetrahedron
Lactone 18. From 16c, lactone 18 was obtained (83% yield).
IR (neat) 1707 cm−1 1H NMR (CDCl3) δ 0.97 (d, J = 7.1 Hz,
.
3H), 0.99 (d, J = 7.1 Hz, 3H), 1.33 (d, J = 7.3 Hz, 3H), 1.78 (dd,
J = 12.4, 13.7 Hz, 1H), 1.86–1.94 (m, 1H), 1.94 (d, J = 3.2 Hz,
1H), 2.04 (ddd, J = 3.6, 3.9, 13.9 Hz, 1H), 2.50 (dq, J = 3.2, 7.1
Hz, 1H), 4.21 (s, 1H), 4.55 (ddd, J = 3.7, 5.6, 12.2 Hz, 1H). 13C