10.1002/anie.202009093
Angewandte Chemie International Edition
COMMUNICATION
involved in the turnover-limiting step.[30] There is also a significant
positive non-linear effect for the model reaction of 1a and 2B
catalyzed by C1b (5 mol%) in THF at 40 °C. We suggest that a
dimeric catalyst might be the active species, because a dimeric
structure was also found for C6 by X-ray analysis[31] (details are
in the SI).
Hwang, W.-M. Dai, R. K. Guy, J. Chem. Soc., Chem. Commun. 1992,
1118-1119; c) chiral stoichiometric LA: D. E. Ward, M. S. Souweha, Org.
Lett. 2005, 7, 3533-3536; d) catalytic asymmetric method: J. Ishihara, S.
Nakadachi, Y. Watanabe, S. Hatakeyama, J. Org. Chem. 2015, 80,
2037−2041.
[7]
Selected reviews on catalytic asymmetric DAs: a) S. Reymond, J. Cossy,
Chem. Rev. 2008, 108, 5359–5406; b) X. Liu, H. Zheng, Y. Xia, L. Lin, X.
Feng, Acc. Chem. Res. 2017, 50, 2621-2631; c) H. Du, K. Ding, in
Comprehensive Enantioselective Organocatalysis, Ed.: P. I. Dalko,
Wiley-VCH, Weinheim, 2013, Vol. 3, pp 1131-1162.
UV-Vis titrations were performed in which C1b was treated with
1a. Having added 1.0 equiv. of 1a, the resulting spectrum is very
similar to the one of the precatalyst, in which a neutral naphthol
unit is present. With larger amounts of up to 10 equiv. of 1a, the
spectra did not significantly change anymore. This suggests that
1a is deprotonated by the zwitterionic moiety. In combination with
the zero order kinetic dependence for 1a, we suggest that 1a
binds to the Cu center where it gets deprotonated resulting in
substrate saturation. A Cu-dienolate could indeed be found by ESI
HRMS (disodium salt: m/z = 1128.2563, calculated: 1128.2564).
The interpretation was validated by 1H-NMR titrations, which were
done in THF-d8 at 20 °C. Because the catalyst is paramagnetic,
no well resolved signals were detected. By addition of 1 equiv. of
1a, its signals almost disappeared caused by the paramagnetism.
However, with an excess of 1a the signals were appearing again,
thus suggesting that the catalyst is already saturated with 1 equiv.
In conclusion, we have reported an efficient way to catalyze [4+2]-
cycloadditions with acidic prodienes. They are activated by
coordination to a LA and deprotonation by a zwitterionic moiety
forming a metal dienolate. The acidic OH group generated during
this proton transfer and the imidazolium unit are crucial for
excellent diastereo- and enantioselectivity. In combination with
the first order kinetic dependence for maleimide 2B, it is likely that
the cycloaddition step is usually turnover-limiting. The reaction
was found to be applicable to different substrate types and TONs
of up to 3680 were achieved. Moreover, the catalyst can be
prepared in very high overall yield, is stable during catalysis and
can be readily recycled by a simple filtration protocol.
[8]
[9]
Michael additions: F. Willig, J. Lang, A. C. Hans, M. R. Ringenberg, D.
Pfeffer, W. Frey, R. Peters, J. Am. Chem. Soc. 2019, 141, 12029–12043.
Lewis acid / Brønsted base catalysis: M. Shibasaki, N. Kumagai, in
Cooperative Catalysis – Designing Efficient Catalysts for Synthesis; R.
Peters (Ed.), Wiley-VCH, Weinheim, 2015.
[10] For more cooperative polyfunctional LA / azolium / H bond catalysts
developed by our group, see: a) M. Mechler, R. Peters, Angew. Chem.
Int. Ed. 2015, 54, 10303–10307; b) J. Schmid, T. Junge, J. Lang, W. Frey,
R. Peters, Angew. Chem. Int. Ed. 2019, 58, 5447-5451.
[11] Related cooperative bi-/polyfunctional LA catalysts bearing cationic side
arms developed by our group: a) D. Brodbeck, S. Álvarez-Barcia, J.
Meisner, F. Broghammer, J. Klepp, D. Garnier, W. Frey, J. Kästner, R.
Peters, Chem. Eur. J., 2019, 25, 1515-1524; b) D. Brodbeck, F.
Broghammer, J. Meisner, J. Klepp, D. Garnier, W. Frey, J. Kästner, R.
Peters, Angew. Chem. Int. Ed. 2017, 56, 4056–4060; c) F. Broghammer,
D. Brodbeck, T. Junge, R. Peters, Chem. Commun. 2017, 53, 1156-
1159; d) P. Meier, F. Broghammer, K. Latendorf, G. Rauhut, R. Peters,
Molecules 2012, 17, 7121–7150; e) T. Kull, J. Cabrera, R. Peters, Chem.
Eur. J. 2010, 16, 9132–9139; f) T. Kull, R. Peters, Angew. Chem. Int. Ed.
2008, 47, 5461–5464; for related polymetallic catalysts, see e.g.: g) J.
Schmid, W. Frey, R. Peters, Organometallics 2017, 36, 4313–4324; h)
M. Mechler, W. Frey, R. Peters, Organometallics 2014, 33, 5492-5508;
i) M. Mechler, K. Latendorf, W. Frey, R. Peters, Organometallics 2013,
32, 112–130.
[12] T. Suzuki, S. Watanabe, S. Kobayashi, K. Tanino, Org. Lett. 2017, 19,
922−925.
[13] H. Shimizu, H. Okamura, N. Yamashita, T. Iwagawa, M. Nakatani,
Tetrahedron Lett. 2001, 42, 8649–8651.
[14] K. Afarinkia, V. Vinader, T. D. Nelson, G. H. Posner, Tetrahedron 1992,
48, 9111–9171.
[15] H. Okamura, T. Iwagawa, M. Nakatani, Tetrahedron Lett. 1995, 36,
5939–5942.
Acknowledgements
[16] a) With maleimide: H. Okamura, Y. Nakamura, T. Iwagawa, M. Nakatani,
Chem. Lett. 1996, 193-194; b) L. Liu, Y. Cotelle, A.-B. Bornhof, C.
Besnard, N. Sakai, S. Matile, Angew. Chem. Int. Ed. 2017, 56, 13066–
13069; c) J. Y.-T. Soh, C.-H. Tan, J. Am. Chem. Soc. 2009, 131, 6904-
6905; d) use of chiral N-acryloyloxazolidinones in combination with
cinchona alkaloids: see ref. 13 and H. Okamura, K. Morishige, T.
Iwagawa, M. Nakatani, Tetrahedron Lett. 1998, 39, 1211-1214; e) use of
an α-chloroacrylate: see ref. 12, f) use of enones and α,β-unsaturated
nitriles: Y. Wang, H. Li, Y.-Q. Wang, Y. Liu, B. M. Foxman, L. Deng, J.
Am. Chem. Soc. 2007, 129, 6364-6365; g) R. P. Singh, K. Bartelson, Y.
Wang, H. Su, X. Lu, L. Deng, J. Am. Chem. Soc. 2008, 130, 2422-2423;
h) L.-M. Shi, W.-W. Dong, H.-Y. Tao, X.-Q. Dong, C.-J. Wang, Org. Lett.
2017, 19, 4532−4535; i) use of nitroolefins: K. J. Bartelson, R. P. Singh,
B. M. Foxman, L. Deng, Chem. Sci. 2011, 2, 1940-1944; j) for a non-
enantioselective method with maleic anhydride, see: E. J. Corey, A. P.
Kozikowski, Tetrahedron Lett. 1975, 16, 2389-2392.
This work was financially supported by the Deutsche
Forschungsgemeinschaft (DFG, project 310990893). VMP thanks
the Landesgraduiertenförderung BW for a Ph.D. scholarship.
Keywords: asymmetric catalysis • Diels-Alder • lactones •
lactams • polyfunctional catalyst
[1]
a) K. Ishihara, A. Sakakura, in Science of Synthesis, Stereoselective
Synthesis, Eds.: J. G. De Vries, G. A. Molander, P. A. Evans, 2011, Vol.
3, pp 67-123; b) H. Du, K. Ding, in Handbook of Cyclization Reactions,
Ed.: S. Ma, 2010, Vol. 1, pp 1–57.
[2]
[3]
K. Mikami, K. Aikawa, in Catalytic Asymmetric Synthesis (3rd Edition),
Ed.: I. Ojima, 2010, 683–737.
a) J.-L. Li, T.-Y. Liu, Y.-C. Chen, Acc. Chem. Res. 2012, 45, 1491-1500;
b) Klier, L.; Tur, F.; Poulsen, P. H.; Jørgensen, K. A., Chem. Soc.
Rev. 2017, 46, 1080.
[17] Review: P. Chauhan, J. Kaur, S. S. Chimni, Chem. Asian J. 2013, 8, 328
[18] H. Okamura, H. Shimizu, Y. Nakamura, T. Iwagawa, M. Nakatani,
Tetrahedron Lett. 2000, 51, 4147–4150.
[4]
[5]
[6]
J. Shen, C.-H. Tan, Org. Biomol. Chem. 2008, 6, 3229-3236; c) V.
Marcos, J. Aleman, Chem. Soc. Rev. 2016, 45, 6812–6832.
V. H. Rawal, A. N. Thadani, in Asymmetric Synthesis (2nd Edition), Ed.:
M. Christmann, S. Bräse, 2008, pp 144–148.
[19] N. Tienabe Kipassa, H. Okamura, K. Kina, T. Hamada, T. Iwagawa, Org.
Lett. 2008, 10, 815-816.
[20] a) see [16c]; for early studies: b) H. Okamura, H. Nagaike, T. Iwagawa,
M. Nakatani, Tetrahedron Lett. 2000, 41, 8317–8321; additional studies:
c) T. Takahashi, U. V. S. Reddy, Y. Kohari, C. Seki, T. Furuyama, N.
a) Achiral stoichiometric LA: K. Narasaka, S. Shimada, K. Osoda, N.
Iwasawa, Synthesis 1991, 1171-1172; b) K. C. Nicolaou, J. J. Liu, C.-K.
This article is protected by copyright. All rights reserved.