Synthesis of 3,6-Disubstituted-3,6-dihydropyridin-2-ones
mL) were added K2CO3 (724 mg, 5.24 mmol) and MeI at 0 °C.
After stirring the mixture for 1 h at room temperature, the whole
was extracted with EtOAc. The extract was washed with brine and
dried over MgSO4. Concentration under reduced pressure followed
by flash chromatography over silica gel with n-hexanes-EtOAc
dissolved in CH2Cl2 (5 mL). Et3N (720 µL, 5.17 mmol) and acryloyl
chloride (336 µL, 1.01 mmol) were added dropwise to the above
solution at -20 °C, and the mixture was stirred for 1.5 h at 0 °C
under argon. Saturated NaHCO3 (2 mL) was added to the above
mixture at 0 °C, and the whole was extracted with EtOAc. The
extract was washed successively with saturated citric acid, brine,
saturated NaHCO3, and brine and dried over MgSO4. Concentration
under reduced pressure followed by flash chromatography over
silica gel with n-hexanes-EtOAc (6:1) gave the title compound
13a (316 mg, 83.8% yield) as a colorless oil (rotamer mixture):
[R]33D -51.3 (c 0.94, CHCl3); 1H NMR (600 MHz at 323 K, CDCl3)
δ 0.04 (s, 6H), 0.06 (s, 3H), 0.07 (s, 3H), 0.88 (s, 9H), 0.92 (9H),
2.81 (dd, J ) 14.3, 10.6 Hz, 1H), 2.84-2.90 (m, 1H), 2.87 (s,
3H), 2.91-2.97 (m, 1H), 2.94 (s, 3H), 3.02-3.08 (m, 1H), 4.02
(ddd, J ) 10.4, 6.2, 4.1 Hz, 1H), 4.20 (t, J ) 6.8 Hz, 1H), 4.40-
4.50 (m, 1H), 4.65-4.80 (m, 1H), 5.15 (d, J ) 10.4 Hz, 1H), 5.24-
5.30 (m, 3H), 5.33 (dd, J ) 10.8, 1.8 Hz, 1H), 5.52 (dd, J ) 10.5,
2.0 Hz, 1H), 5.75-5.90 (m, 3H), 6.10 (dd, J ) 16.8, 2.0 Hz, 1H),
6.18 (dd, J ) 17.0, 10.8 Hz, 1H), 6.36 (dd, J ) 16.8, 10.5 Hz,
1H), 7.05-7.26 (m, 10H); 13C NMR (100 MHz, CDCl3) δ -5.0,
-4.9, -4.1, -3.9, 17.9, 18.0, 25.5, 25.6, 25.8, 28.3, 34.1, 34.8,
63.5, 73.6, 75.0, 75.4, 115.6, 117.4, 125.2, 125.8, 126.1, 126.2,
126.7, 127.9, 128.2, 128.4, 128.6, 129.0, 137.4, 138.0, 138.2, 138.4,
166.6, 168.2; HRMS (FAB) m/z calcd for C21H34NO2Si (MH+),
360.2359; found, 360.2352.
(6:1) gave the title compound 12a (507 mg, 98.6%) as colorless
1
crystals: mp 74-75 °C; [R]33 -49.8 (c 1.02, CHCl3); H NMR
D
(270 MHz, CDCl3) δ 0.03 (s, 3H), 0.08 (s, 3H), 0.95 (s, 9H), 2.80
(dd, J ) 14.1, 8.7 Hz, 1H), 3.08 (s, 3H), 3.11 (dd, J ) 13.8, 6.2
Hz, 1H), 4.12-4.24 (m, 1H), 4.32-4.24 (m, 1H), 5.08 (d, J )
10.5 Hz, 1H), 5.19 (dt, J ) 17.1, 1.3 Hz, 1H), 5.90 (ddd, J ) 17.1,
10.2, 6.9 Hz, 1H), 7.07-7.18 (m, 5H), 7.25-7.55 (m, 4H); 13C
NMR (100 MHz, CDCl3) δ -4.8, -3.7, 18.3, 26.1, 31.6, 33.9,
64.1, 75.9, 117.1, 123.6, 126.4, 128.3, 128.9, 130.3, 131.1, 132.5,
133.0, 137.9, 147.8. Anal. Calcd for C24H34N2O5SSi: C, 58.75; H,
6.98; N, 5.71. Found: C, 58.71; H, 7.05; N, 5.69.
(3S,4S)-4-(N-Acryloyl-N-methylamino)-3-[(tert-butyl)dimeth-
ylsiloxy]-5-phenylpent-1-en (13a). To a stirred solution of the
N-Me-sulfonamide 12a (507 mg, 1.03 mmol) in DMF (3.6 mL)
were added LiOH‚H2O (260 mg, 6.20 mmol) and HSCH2CO2H
(216 µL, 1.26 mmol) at 0 °C, and the mixture was stirred for 2 h
at room temperature. The mixture was extracted with EtOAc. The
extract was washed with saturated NaHCO3 and dried over MgSO4.
Concentration under reduced pressure gave oily residues that were
(3S,4S)-4-(N-Acryloyl-N-methylamino)-5-phenylpent-1-en-3-
ol (16a). The acrylamide 13a (116 mg, 0.322 mmol) was dissolved
in 1.0 M TBAF in THF (1 mL) at 0 °C, and the mixture was stirred
for 3 h at room temperature. The mixture was extracted with EtOAc.
The extract was washed with brine and dried over MgSO4.
Concentration under reduced pressure followed by flash chroma-
tography over silica gel with n-hexanes-EtOAc (3:1) gave the title
compound 16a (78.2 mg, 98.9% yield) as a colorless oil (rotamer
(29) Relative configurations of 48 and 49 were assigned as 3,6-trans
derivatives based on the published data (ref 5). The observed chemical shifts
of the R-protons of 48 and 49 (2.45 and 2.16 ppm, respectively) were nearly
identical to those of the corresponding N-methyl derivatives 27 and 28 (2.41
and 2.14 ppm, respectively). We also confirmed that the R-proton of the
corresponding 3,6-cis diastereomer of 48 appeared downfield (3.16 ppm)
in comparison with 48, as in the cases of N-methyl derivatives. The R-proton
chemical shift of 50 was 2.29 ppm, which is similar to that of the
corresponding N-methyl-3,6-trans derivative 30 (2.21 ppm). Based on these
data, compound 50 was assigned as 3,6-trans.
mixture): [R]29 -92.2 (c 1.58, CHCl3); 1H NMR (600 MHz,
D
CDCl3) δ 2.75 (s, 3H), 2.78 (dd, J ) 14.4, 10.5 Hz, 0.3H), 2.94
(dd, J ) 14.2, 4.1 Hz, 0.3H), 2.97 (s, 0.9H), 3.06 (dd, J ) 14.0,
5.5 Hz, 1H), 3.10-3.30 (m, 1H), 4.01 (ddd, J ) 10.9, 7.4, 4.2 Hz,
0.3H), 4.22 (t, J ) 7.2 Hz, 0.3H), 4.26 (m, 1H), 5.16 (d, J ) 10.5
Hz, 1H), 5.31 (d, J ) 10.3 Hz, 0.3H), 5.37 (dt, J ) 17.1, 1.4 Hz,
1H), 5.35-5.45 (m, 0.6H), 5.66 (dd, J ) 10.4, 1.7 Hz, 1H), 5.80-
5.90 (m, 1.6H), 6.16 (dd, J ) 16.9, 10.8 Hz, 0.3H), 6.24 (dd, J )
16.7, 1.3 Hz, 1H), 6.38 (dd, J ) 16.8, 10.4 Hz, 1H), 7.00-7.30
(m, 6.5H); 13C NMR (100 MHz, CDCl3) δ 28.1, 34.4, 34.9, 63.5,
73.5, 73.8, 115.6, 118.4, 126.0, 126.2, 126.5, 128.1, 128.2, 128.3,
128.4, 128.6, 128.7, 128.8, 137.3, 138.4, 168.0, 168.6; HRMS
(FAB) m/z calcd for C15H20NO2 (MH+), 246.1494; found, 246.1490.
(5S,6S)-6-Benzyl-5,6-dihydro-5-hydroxy-1-methylpyridin-2-
one (17a). To a solution of the acrylamide 16a (750 mg, 3.05 mmol)
in CH2Cl2 (20 mL) was added Grubbs’ catalyst second generation
(129 mg, 0.152 mmol), and the mixture was stirred for 6 h at room
temperature under argon. Concentration under reduced pressure
followed by flash chromatography over silica gel with n-hexanes-
EtOAc (1:1) gave the title compound 17a (558 mg, 84.2% yield)
as colorless crystals: mp 96-97 °C; [R]28D -137.1 (c 1.06, CHCl3);
1H NMR (270 MHz, CDCl3) δ 2.56 (s, 3H), 2.97 (dd, J ) 13.5,
9.2 Hz, 1H), 3.19 (dd, J ) 13.5, 4.6 Hz, 1H), 3.60-3.85 (m, 2H),
4.87 (m, 1H), 5.85 (d, J ) 9.8 Hz, 1H), 6.42 (d, J ) 9.8 Hz, 1H),
7.14-7.35 (m, 5H); 13C NMR (100 MHz, CDCl3) δ 33.1, 35.1,
65.6, 66.7, 122.8, 126.2, 128.3, 129.2, 138.3, 143.7, 163.6. Anal.
Calcd for C13H15NO2: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.69;
H, 7.01; N, 6.37.
(30) (a) Feng, Y.; Broder, C. C.; Kennedy, P. E.; Berger, E. A. Science
1996, 272, 872. (b) Koshiba, T.; Hosotani, R.; Miyamoto, Y.; Ida, J.; Tsuji,
S.; Nakajima, S.; Kawaguchi, M.; Kobayashi, H.; Doi, R.; Hori, T.; Fujii,
N.; Imamura, M. Clin. Cancer Res. 2000, 6, 3530. (c) Nanki, T.; Hayashida,
K.; EI-Gabalawy, H. S.; Suson, S.; Shi, K.; Girshick, H. J.; Yavuz, S.;
Lipsky, P. E. J. Immunol. 2000, 165, 6590. (d) Mu¨ller, A.; Homey, B.;
Soto, H.; Ge, N.; Catron, D.; Buchanan, M. E.; McClanahan, T.; Murphy,
E.; Yuan, W.; Wagner, S. N.; Barrera, J. L.; Mohar, A.; Verastegui, E.;
Zlotnik, A. Nature 2001, 410, 50. (e) Tamamura, H.; Hori, A.; Kanzaki,
N.; Hiramatsu, K.; Mizumoto, M.; Nakashima, H.; Yamamoto, N.; Otaka,
A.; Fujii, N. FEBS Lett. 2003, 550, 79. (f) Tamamura, H.; Fujisawa, M.;
Hiramatsu, K.; Mizumoto, M.; Nakashima, H.; Yamamoto, N.; Otaka, A.;
Fujii, N. FEBS Lett. 2004, 569, 99.
(31) For an example of CXCR4 inhibitors, see: (a) Schols, D.; Struyf,
S.; Van Damme, J.; Este, J. A.; Henson, G.; De Clercq, E. J. Exp. Med.
1997, 186, 1383. (b) Murakami, T.; Nakajima, T.; Koyanagi, Y.; Tachibana,
K.; Fujii, N.; Tamamura, H.; Yoshida, N.; Waki, M.; Matsumoto, A.; Yoshie,
O.; Kishimoto, T.; Yamamoto, N.; Nagasawa, T. J. Exp. Med. 1997, 186,
1389. (c) Doranz, B. J.; Grovit-Ferbas, K.; Sharron, M. P.; Mao, S.-H.;
Bidwell Goetz, M.; Daar, E. S.; Doms, R. W.; O’Brien, W. A. J. Exp. Med.
1997, 186, 1395. (d) Donzella, G. A.; Schols, D.; Lin, S. W.; Este, J. A.;
Nagashima, K. A.; Maddon, P. J.; Allaway, G. P.; Sakmar, T. P.; Henson,
G.; De Clercq, E.; Moore, J. P. Nat. Med. 1998, 4, 72. (e) Howard, O. M.
Z.; Oppenheim, J. J.; Hollingshead, M. G.; Covey, J. M.; Bigelow, J.;
McCormack, J. J.; Buckheit, R. W., Jr.; Clanton, D. J.; Turpin, J. A.; Rice,
W. G. J. Med. Chem. 1998, 41, 2184.
(32) Fujii, N.; Oishi, S.; Hiramatsu, K.; Araki, T.; Ueda, S.; Tamamura,
H.; Otaka, A.; Kusano, S.; Terakubo, S.; Nakashima, H.; Broach, J. A.;
Trent, J. O.; Wang, Z.; Peiper, S. C. Angew. Chem., Int. Ed. 2003, 42,
3251.
(33) Lamothe, S.; Zacharie, B.; Attardo, G.; Labrecque, D.; Courchesne,
M.; Falardeau, G.; Rej, R.; Abbott, S. PCT Int. Appl. WO 2000017197 A1
20000330, 2000; p 187.
(5S,6S)-6-Benzyl-5,6-dihydro-5-diphenylphosphoryloxy-1-meth-
ylpyridine-2-one (24). To a solution of the alcohol 17a (450 mg,
2.07 mmol) and pyridine (1.33 mL, 16.5 mmol) in CH2Cl2 (7.5
mL) was added dropwise diphenylphosphoryl chloride (1.72 mL,
8.28 mmol) at 0 °C, and the mixture was stirred at 0 °C for 4 h.
H2O (10 mL) was added to the above mixture, and the whole was
extracted with EtOAc. The extract was washed successively with
saturated citric acid, brine, saturated NaHCO3, and brine and dried
(34) In 1H NMR experiments, the R-proton of compound 59 was detected
at higher field (2.20 ppm) in comparison with that of the corresponding
diastereomer (2.72 ppm). This can be rationalized by the anisotropic effect
of the naphthalene ring, as in the case of phenylalanine-derived compounds.
Based on these data, the relative configuration of 59 was assigned as 3,6-
trans. See the Supporting Information.
(35) (a) Dodd, D. S.; Kozikowski, A. P. Tetrahedron Lett. 1994, 35,
977. (b) Beumer, R.; Reiser, O. Tetrahedron 2001, 57, 6497.
J. Org. Chem, Vol. 71, No. 10, 2006 3949