Y. R. Dumond, E. Negishi / Tetrahedron 60 (2004) 1345–1352
1351
additional 2.0 mmol (0.22 g) of 1-octyne were added at
Acknowledgements
278 8C, and the reaction mixture was stirred overnight at
23 8C to produce 13 in 90% NMR yield: 1H NMR (CDCl3,
Me4Si) 0.89 (t, J¼6.8 Hz, 3H), 1.11 (t, J¼6.7 Hz, 3H), 1.19
(t, J¼7.6 Hz, 3H), 1.2–1.55 (m, 12H), 1.8–2.8 (m, 10H),
6.85 (s, 1H); 13C NMR (CDCl3) d 13.99, 14.23, 14.36,
21.21, 22.91, 23.28, 25.47, 26.46, 26.94, 29.72, 31.57,
31.80, 32.00, 33.03, 126.41, 132.54, 134.87, 137.41, 137.61,
139.29; HRMS calcd for C20H32 (Mþ) 272.2504, found
272.2501.
The authors thank the National Science Foundation (CHE-
0309613) and Purdue University for support of this
research. Y. R. D. was a Purdue Research Foundation
Graduate Fellow (1997–1998). Generous assistance in the
procurement of Zr compounds by Boulder Scientific Co. is
gratefully acknowledged. We also thank Professor
T. Takahashi for sharing unpublished results and Professor
V. Gegorgyan for providing us with useful information.
Technical assistance provided by Ms Q. Hu is gratefully
acknowledged.
4.6.4. Preparation of 1-phenyl-1,7-dodecadiyne (14) and
its conversion to 5-phenyl-6-(n-hexyl)-8-(n-butyl)-
1,2,3,4-tetrahydronaphthalene (15). 1,7-Octadiyne (10.6 g,
n
13.3 mL, 100 mmol) was mono-butylated by using BuLi
(100 mmol), nBuI (22.1 g, 13.7 mL, 120 mmol), and DMPU
(90 mL). After the usual workup, distillation afforded
1,7-dodecadiyne in about 35% yield. Successive treatment
References and notes
1. Berthelot, M. C. R. Acad. Sci. 1866, 905.
2. Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T. Liebigs
Ann. Chem. 1948, 560, 1.
n
of 1,7-dodecadiyne (0.45 g, 2.8 mmol) in THF with BuLi
(3.36 mmol 278 8C), dry ZnBr2 (4.2 mmol, 278 8C for 1 h
and then 23 8C for 0.5 h), iodobenzene (0.86 g, 0.47 mL,
4.2 mmol), and Pd(PPh3)4 (65 mg, 0.056 mmol, 14 h,
23 8C).32 The reaction mixture was successively treated
with 3 N HCl, pentane, aqueous NaHCO3, and MgSO4 to
3. See, for example Collman, J. P.; Hegedus, L. S.; Norton, J. R.;
Finke, R. G. Principles and Applications of Organotransition
Metal Chemistry; 2nd ed. University Science Books: Mill
Valley, CA, 1987; p 989.
1
give 14 in 91% yield: H NMR (CDCl3Me4Si) d 0.97 (t,
4. In place of ‘pair’-selective, copuloselective (copulo in Latin¼
to pair) has been proposed. See Anastasia, A.; Negishi, E. In
Handbook of Organopalladium Chemistry for Organic
Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York,
2002; p 311.
J¼7 Hz, 3H), 1.45–1.55 (m, 4H), 1.7–1.8 (m, 4H), 2.2–2.3
(m, 4H), 2.49 (t, J¼6.8 Hz, 2H), 7.3–7.35 (m, 3H), 7.45–
7.5 (m, 2H); 13C NMR (CDCl3) d 13.59, 18.30, 18.39,
18.92, 21.90, 27.79, 28.22, 31.18, 79.54, 80.52, 80.74,
89.89, 123.94, 127.43, 128.11 (2C), 131.47 (2C).
5. Vollhardt, K. P. C. Angew Chem. Int. Ed. 1984, 23, 539, and
references therein.
1-Phenyl-1,7-dodecadiyne (14) (0.476 g, 2.0 mmol) was
converted to 15 in 71% NMR yield by its reaction with
nHexCuCLi (4.0 mmol) and 1-octyne (2.0 mmol) as
described in Section 4.6.3. The product (15) yielded the
following spectral data: 1H NMR (CDCl3, Me4Si) d 0.88 (t,
J¼6.7 Hz, 6H), 125–1.6 (m, 16H), 1.8–2.75 (m, 8H), 6.93
(s, 1H), 7.1–7.55 (m, 5H); 13C NMR (CDCl3) d 13.92 (2C),
22.28, 23.12, 26.37, 26.84, 28.77, 28.87, 29.07, 29.33,
31.71, 31.84, 32.41, 32.61, 126.19, 126.66, 127.99 (2C),
129.55 (2C), 132.06, 134.92, 137.53, 139.00, 139.70,
141.06; HRMS calcd for C26H36 (Mþ) 348.2817, found
348.2816.
6. Neeson, S. J.; Stevenson, P. J. Tetrahedron 1989, 45, 6239.
7. For a review, see (a) Wulff, W. D. Comprehensive Organo-
metallic Chemistry II, Abel, E. W., Stone, F. G. A., Wilkinson,
¨
G., Eds.; Pergamon: New York, 1995; Vol. 12, p 469. (b) Dotz,
K. H.; Tomuschat, P. Chem. Soc. Rev. 1999, 28, 187.
8. (a) Negishi, E.; Harring, L. S.; Owczarczyk, Z.; Mohamud,
M. M.; Ay, M. Tetrahedron Lett. 1992, 33, 3253. (b) Negishi,
E.; Ay, M.; Sugihara, T. Tetrahedron 1993, 49, 5471.
9. Zhang, Y.; Negishi, E. J. Am. Chem. Soc. 1989, 111, 3454.
10. Meyer, F. E.; de Meijere, A. Synlett 1999, 777.
11. Grigg, R.; Rasul, R.; Savic, V. Tetrahedron Lett. 1997, 38,
1825.
12. (a) Saito, S.; Yamamoto, Y. In Handbook of Organopalladium
Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-
Interscience: New York, 2002; pp 1635–1646 Chapter
IV.10.2. (b) Gevorgyan, V.; Yamamato, Y. J. Organomet.
Chem. 1999, 576, 232.
4.7. Use of Ind2ZrCl2 and Cp2HfCl2 in the synthesis of 5a
from 3-hexyne and 1-octyne
Following the non-optimized procedure described in
Section 4.3.1, the use of Ind2ZrCl2 and Cp2HfCl2 led to
the formation of 5a in 60 and 35% yields, respectively.
13. Takahashi, T.; Kotora, M.; Xi, Z. J. Chem. Soc., Chem.
Commun. 1995, 361.
14. Takahashi, T.; Hara, R.; Nishihara, Y.; Kotora, M. J. Am.
Chem. Soc. 1996, 118, 5154.
4.8. Reaction of bis(phenylethynyl)zirconocene with
(E)-2-phenylethenyllithium
15. Takahashi, T.; Xi, Z.; Yamazaki, A.; Liu, Y.; Nakajima, K.;
Kotora, M. J. Am. Chem. Soc. 1998, 120, 1672.
Bis(phenylethynyl)-zirconocene was generated by treat-
ing Cp2ZrCl2 (2.0 mmol) with PhCuCLi prepared from
4 mmol each of PhCuCH and nBuLi in THF (75%
NMR yield, Cp signal at d 6.15 ppm). Its treatment with
(E)-2-phenylethenyllithium (4 mmol) at 23 8C for 1 d
followed by addition of I2 (2.5 equiv.) let to a complex
mixture containing 1,4-diphenyl-1-buten-3-yne and 1,4-
diphenyl-1,3-butadiene. This reaction was not further
investigated.
16. Takagi, K.; Rousset, C. J.; Negishi, E. J. Am. Chem. Soc. 1991,
113, 1440.
17. Dumond, Y.; Negishi, E. J. Am. Chem. Soc. 1999, 121, 11223.
18. (a) Negishi, E.; Cederbaum, F. E.; Takahashi, T. Tetrahedron
Lett. 1986, 27, 2829. (b) Negishi, E.; Holmes, S. J.; Tour, J. M.;
Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T.
J. Am. Chem. Soc. 1989, 111, 3336.
19. (a) Kondakov, D.; Negishi, E. Chem. Commun. 1996, 963.