4
Tetrahedron Letters
10. Johnstone, R. A. W. Mech. Mol. Migr. 1969, 2, 249–266.
On the other hand, in the case of isoxazoline g, ZnI2 might
11. (a) Das, P.; Valente, E. J.; Hamme II, A. T. Eur. J. Org. Chem. 2014,
2659–2663; (b) Das, P and Hamme II, A. T. Eur. J. Org. Chem. 2015,
5159–5166; (c) Das, P.; Omollo, A. O.; Sitole, L. J.; McClendon, E.;
Valente, E. J.; Raucher, D.; Walker, L. R.; Hamme II, A. T.
Tetrahedron Lett. 2015, 56, 1794–1797.
12. (a) Ohemeng, K. A.; Podlogar, B. L.; Nguyen, V. N.; Bernstein, J. I.;
Krause, H. M.; Hilliard, J. J.; Barrett, J. F. J. Med. Chem. 1997, 40,
3292–3296; (b) Kawase, M.; Kikugawa, Y. J. Chem. Soc. Perkin 1,
1979, 643–645; (c) Dondoni, A.; Franco, S.; Junquera, F.; Merchan, F.
L.; Merino, P.; Tejero, T. Synthetic Communications 1994, 24, 2537–
2550.
be playing the role as a Lewis acid and coordinated with N- and
O- atoms where the O-vinyl center becomes electrophilic as
shown in intermediate h in Scheme 4. As a result, facilitating a
similar oxidative addition of H2O, followed by a migration of
double bond and elimination of hydroxylamine provided the
desired unsaturated system j (Scheme 4).
Scheme 4. Plausible mechanism for the decomposition of
isoxazoline.
In conclusion, we documented the Zn(II)/H2O-mediated mild
and efficient reaction condition for a smooth transformation of
the propargyl hydroxylamine to unusual α,β-unsaturated ketone.
This reaction can be performed for a wide range of substrates
with few limitations as explained in the text. We believe that this
observation not only grasps reader’s attention due to its novel
mechanistic pathway, it also facilitates the accumulation of many
important building blocks of synthetic and medicinal interest.
Acknowledgments
The project described was supported by NIH/NIGMS (Award
Number: 5 SC3 GM094081-06), and the Analytical and NMR
CORE facilities were supported by the RCMI-Center for
environmental Health (Award Number: 5G12MD007581).
Supplementary Material
1
Supplementary data (compound data including H NMR, 13C
NMR, IR, HRMS and X-ray) associated with this article can be
found, in the online version, at
References
1. (a) Angeli, A.; Alessandri, L.; Aiazzi-Mancini, M. Atti Reale Accad.
Lincei (Rome) 1911, 20, 546. 50; (b) Angeli, A.; Alessandri, L.; Aiazzi-
Mancini, M. Chem. Abstr. 1191, 5, 3403.
2. (a) Tomoda, S.; Tacheuchi, Y.; Nomura, Y.; Chem. Lett. 1982, 1787–
1790; (b) Kaiser, A.; Wiegrebe, W. Monatsh. Chem. 1996, 127, 397–
415; (c) Wheildon, A. R.; Knight, D. W.; Leese, M. P.; Tetrahedron
Lett. 1997, 38, 8553–8556; (d) Murahashi, S.-I.; Mitsui, H.; Shiota, T.;
Tsuda, T.; Watanabe, S. J. Org. Chem. 1990, 55, 1736–1744; (e) Denis,
J.-N.; Tchertchian, S.; Tomassini, A.; Vallée, Y. Tetrahedron Lett.
1997, 38, 5503–5506; (f) Dagoneau, C.; Denis, J.-N.; Vallée, Y. Synlett
1999, 602–604.
3. Aschwanden, P.; Carreira, E. M. Addition of Terminal Acetylides to
C=O and C=N Electrophiles. In Acetylene Chemistry: Chemistry,
Biology and Material Science; Diederich, F., Stang, P. J., Tykwinski, R.
R., Eds.; Wiley: Weinheim, 2005.
4. Carlsen, H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org.
Chem. 1981, 46, 3936–3938.
5. Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. Tetrahedron:
Asymmetry 1997, 8, 3489–3496.
6. Merino, P.; Castillo, E.; Franco, S.; Merchan, F. L.; Tejero, T.
Tetrahedron: Asymmetry 1998, 9, 1759–1769.
7. Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2,
2331–2333.
8. Chiacchio, U.; Casuscelli, F.; Liguori, A.; Rescifina, A.; Romeo, G.;
Sindona, G.; Uccella, N. Heterocycles 1993, 36, 585–600.
9. Szabó, A.; Hermecz, I. J. Org. Chem. 2001, 66, 7219–7222.