10.1002/ejoc.201700588
European Journal of Organic Chemistry
Full Paper
irrespective of the linker, the linear products are more preferred than
their angular counterparts.
We thank Indian Institute of Technology Madras, Chennai for the
infrastructure facility. We thank CSIR INDIA for financial support
through No.02(0209)/14/EMR-II grant. BSC thanks IIT Madras for
HTRA fellowship.
Table 5: Steric bulk effect of quaternary centres on inactivated ether
linker
Keywords: alkynes • cycloadditions • dehydrogenative Diels-Alder
reactions • enynes • linkers •
[1]
[2]
Kobayashi, S.; Jørgensen, K. A. Eds. Cycloaddition Reactions in
Organic Synthesis; Wiley-VCH: Weinheim, 2002.
(a) Norton, J. A. Chem. Rev. 1942, 31, 319. (b) Martin, J. G. and Hill, R.
K. Chem. Rev. 1961, 61, 537; (c) Brieger, G. and Bennett, J. N. Chem.
Rev. 1980, 80, 63. (d) Kagan, H. B. and Riant, O. Chem. Rev. 1992, 92,
1007. (e) Winkler, J. D. Chem. Rev. 1996, 96, 167. (f) Kumar, A. Chem.
Rev. 2001, 101, 1. (g) Takao, K.; Munakata, R. and Tadano, K. Chem.
Rev. 2005, 105, 4779. (g) Diels, O. and Alder, K. Justus Liebigs Ann.
Chem. 1928,460, 98.
[3]
(a) Michael, A. and Bucher, J. E. Chem. Zentrblt., 1898, 731. (b)
Wessig, P. and Müller G. Chem. Rev. 2008, 108, 2051. (c) Danheiser,
R. L.; Gould, A. E.; Pradilla, R. F. and Helgason, A. L. J. Org. Chem.
1994, 59, 5514. (d) Dunetz, J. R. and Danheiser, R. L. J. Am. Chem.
Soc. 2005, 127, 5776. (e) Hayes, M. E.; Shinokubo, H. and Danheiser,
R. L. Org. Lett., 2005, 7, 3917. (f) Wills, M. S. B. and Danheiser, R. L. J.
Am. Chem. Soc. 1998, 120, 9378. (g) Chinta, B. S.; Siraswar, A. and
(h) Wessig, P.; Matthes, A. and Pick, C. Org. Biomol. Chem., 2011, 9,
7599. (i) Wessig, P. and Matthes, A. J. Am. Chem. Soc. 2011, 133,
2642. For metal catalyzed DDA reactions see, (j) Gorin, D. J.; Watson, I.
D. G. and Toste, F. D. J. Am. Chem. Soc. 2008, 130, 3736. (k)
Barluenga, J.; Ferna´ndez-Rodrı´guez, M. A.; Garcı´a-Garcı´a, P. and
Aguilar, E. J. Am. Chem. Soc. 2008, 130, 2764. (l) Saito, S.; Salter, M.
M.; Gevorgyan, V.; Tsuboya, N.; Tando, K. and Yamamoto, Y. J. Am.
Chem. Soc. 1996, 118, 3970. (m) Xi, C.; Chen, C.; Lin, J. and Hong, X.
Org. Lett. 2005, 7, 347. (n) Nakao, Y.; Hirata, Y.; Ishihara, S.; Oda, S.;
Yukawa, T.; Shirakawa, E. and Hiyama, T. J. Am. Chem. Soc. 2004,
126, 15650. (o) Rubina, M.; Conley, M. and Gevorgyan, V. J. Am.
Chem. Soc. 2006, 128, 5818. (p) Xi, C.; Chen, C.; Lin, J. and Hong, X.
Org Lett., 2005, 7, 347. (q) Gevorgyan, V.; Takeda, A.; Homma, M.;
Sadayori, N.; Radhakrishnan, U. and Yamamoto, Y. J. Am. Chem. Soc.
1999, 121, 6391.
Overall the linear vs. angular product distributions during aromatic
TDDA reactions did show little dependency on the steric bulk of the
substituent, on the other hand, it depends strongly on the structure
of the linker of the enyne-alkyne unit.
Conclusions
In conclusion we have performed a systematic study to
understand the effect of two factors such as a) nature of the
linker structure, b) steric bulk created by the of the substituent
on the -carbon of enyne linker, on the distribution of linear vs.
angular naphthalene product during the aromatic tetradehydro
Diels-Alder reaction. From this study it is evident that, the
nature of the structure of linker plays a very strong role on the
product distributions, where different linkers show preference
for the different products, i.e. linear vs. angular. Within the
same linker the internal activation favours the angular products
whereas the external activation favours the linear one. The
steric bulk of the substituent on the linker does not have any
strong as well as consistent role on the product distributions.
Nevertheless no substituent linkers show high preference for
the linear naphthalenes, whereas gradual increase in steric
hindrance favours the angular product up to certain level and
then reverse the preference towards linear.
[4]
(a) Hoye, T. R.; Baire, B.; Niu, D.; Willoughby, P. H. and Woods, B.
P. Nature, 2012, 490, 208. (b) Yun, S. Y.; Wang, K.-P.; Lee, N.-K.;
Mamidipalli, P. and Lee, D. J. Am. Chem. Soc., 2013, 135, 4668. (c)
Bradley, A. Z. and Johnson, R. P. J. Am. Chem. Soc., 1997, 119, 9917.
(d) Miyawaki, K.; Suzuki, R.; Kawano, T. and Ueda, I. Tetrahedron
Lett., 1997, 38, 3943.
Experimental Section
[5]
[6]
Wang, T.; Naredla, R. R.; Thompson, S. K. and Hoye, T. R. Nature,
2016, 532, 484.
General experimental procedure for the synthesis of 1,3-
Dihydronaphtho[2,3-c]furan (14a) through tetradehydro
Diels-Alder reaction.
(a) Rodrı´guez, D.; Navarro, A.; Castedo, L.; Domı´nguez, D. and Saa´,
C. Org Lett., 2000, 2, 1497. (b) Rodrı´guez, D.; Navarro-Va´zquez, A.;
Castedo, L.; Domı´nguez, D. and Saa´, C. J. Am. Chem. Soc. 2001,
123, 9178. (c) Rodrı´guez, D.; Navarro-Va´zquez, A.; Castedo, L.;
Domı´nguez, D. and Saa´, C. J. Org. Chem. 2003, 68, 1938. (d) Ajaz,
A.; Bradley, A. Z.; Burrell, R. C.; Li, W. H. H.; Daoust, K.; Bovee, J. L.
B.; DiRico, K. J. and Johnson, R. P. J. Org. Chem. 2011, 76, 9320.
To a solution of alkyne 8 (70 mg, 0.411 mmol) in 1,2-DCB (7
mL) was taken in a reaction tube. The reaction tube was kept at
150°C. After 114 h, the reaction mixture was purified by column
chromatography (9:1, hexane:EtOAc) gave the 14L (35 mg,
0.205 mmol, 50 %) as a yellow solid.
For full details of all experiments, see the Supporting
Information.
Acknowledgements
This article is protected by copyright. All rights reserved.