Please do not adjust margins
Dalton Transactions
Page 4 of 6
DOI: 10.1039/C7DT02260C
COMMUNICATION
Journal Name
17.
18.
19.
20.
D. N. Rao, S. Rasheed, S. Aravinda, R. A. Vishwakarma and
P. Das, RSC Adv., 2013, 3, 11472.
A. E. King, B. L. Ryland, T. C. Brunold and S. S. Stahl,
Organometallics, 2012, 31, 7948.
J. C. Vantourout, H. N. Miras, A. Isidro-Llobet, S. Sproules
and A. J. B. Watson, J. Am. Chem. Soc., 2017, 139, 4769.
T. Garnier, R. Sakly, M. Danel, S. Chassaing and P. Pale,
Synthesis, 2017, 49, 1223.
J. P. Collman and M. Zhong, Org. Lett., 2000, 2, 1233.
J. P. Collman, M. Zhong, C. Zhang and S. Costanzo, J. Org.
Chem., 2001, 66, 7892.
S. S. van Berkel, A. van den Hoogenband, J. W. Terpstra,
M. Tromp, P. W. N. M. van Leeuwen and G. P. F. van
Strijdonck, Tetrahedron Lett., 2004, 45, 7659.
M. Tromp, G. P. F. van Strijdonck, S. S. van Berkel, A. van
den Hoogenband, M. C. Feiters, B. de Bruin, S. G. Fiddy, A.
M. J. van der Eerden, J. A. van Bokhoven, P. W. N. M. van
Leeuwen and D. C. Koningsberger, Organometallics, 2010,
29, 3085.
In conclusion, use of a chelating ligand containing a sulfonate
group able to coordinate to boronic acid afforded a highly
active catalyst for Chan-Evans-Lam couplings, which does not
require additional base/ligand, tolerates the presence of water
and displays only slight dependence of activity on the solvent
and the counter-anion. Consequently, no optimization of
reaction conditions other than time and temperature was
necessary to achieve full conversion to product for the
coupling of a large variety of amines and anilines, including
substrates generally considered challenging. In particular,
sterically crowded substrates, such as 2,4,6-trimethylaniline,
tert-butylamine and dibutylamine, react readily. Considering
also the similarly high activity reported for [Cu(DMAP)4I]I with
amines and anilines,32 the use of preformed coordination
complexes can provide more universal Chan-Evans-Lam
coupling protocols than simple copper salt catalysts.
21.
22.
23.
24.
25.
26.
27.
28.
T. Onaka, H. Umemoto, Y. Miki, A. Nakamura and T.
Maegawa, J. Org. Chem., 2014, 79, 6703.
B. Liu, B. Liu, Y. Zhou and W. Chen, Organometallics, 2010,
29, 1457.
L. Wang, Z. Jiang, L. Yu, L. Li, Z. Li and X. Zhou, Chem. Lett.,
2010, 39, 764.
M. Islam, S. Mondal, P. Mondal, A. Roy, K. Tuhina, M.
Mobarok, S. Paul, N. Salam and D. Hossain, Catal. Lett.,
2011, 141, 1171.
B. Kaboudin, Y. Abedi and T. Yokomatsu, Eur. J. Org.
Chem., 2011, 2011, 6656.
A. Gogoi, G. Sarmah, A. Dewan and U. Bora, Tetrahedron
Lett., 2014, 55, 31.
Anuradha, S. Kumari and D. D. Pathak, Tetrahedron Lett.,
2015, 56, 4135.
S. Roy, M. J. Sarma, B. Kashyap and P. Phukan, Chem.
Commun. (Cambridge, U. K.), 2016, 52, 1170.
S. Hazra, S. Mukherjee, M. F. C. Guedes da Silva and A. J.
L. Pombeiro, RSC Adv., 2014, 4, 48449.
Y.-M. Ou, Z.-Y. Zhao, Yue-Hua Shi, Y.-L. Zhang and Y.-M.
Jiang, Chin. J. Struct. Chem., 2009, 28, 457.
G.-G. Yang, M. Ou-Yang, X.-J. Meng, X.-R. Huang and Y.-M.
Jiang, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009,
65, m1200.
S. Hazra, A. Karmakar, M. d. F. C. Guedes da Silva, L. u.
Dlhan, R. Boca and A. J. L. Pombeiro, New J. Chem., 2015,
39, 3424.
S. Hazra, A. P. C. Ribeiro, M. F. C. Guedes da Silva, C. A.
Nieto de Castro and A. J. L. Pombeiro, Dalton Trans., 2016,
45, 13957.
T. D. Quach and R. A. Batey, Org. Lett., 2003, 5, 4397.
J. C. Antilla and S. L. Buchwald, Org. Lett., 2001, 3, 2077.
S. Chen, H. Huang, X. Liu, J. Shen, H. Jiang and H. Liu, J.
Comb. Chem., 2008, 10, 358.
J. C. Vantourout, R. P. Law, A. Isidro-Llobet, S. J. Atkinson
and A. J. B. Watson, J. Org. Chem., 2016, 81, 3942.
A. P. Terent'ev and Y. D. Mogilyanskii, Zh. Obshch. Khim.,
1958, 28, 1959.
Notes and references
‡ Heated reactions were conducted under oxygen atmosphere.
Reactions in open vessels under ambient atmosphere led either
to significant evaporation of amine and/or to reduced yields due
to reduced oxygen uptake in the presence of solvent vapour.
1.
K. Koide, in New Trends in Cross-Coupling: Theory and
Applications, The Royal Society of Chemistry, 2015, DOI:
10.1039/9781782620259-00779, pp. 779.
Y. Jiang and D. Ma, in Copper-Mediated Cross-Coupling
Reactions, John Wiley & Sons, Inc., 2013, DOI:
10.1002/9781118690659.ch1, pp. 1.
F. Paul, J. Patt and J. F. Hartwig, J. Am. Chem. Soc., 1994,
116, 5969.
A. S. Guram and S. L. Buchwald, J. Am. Chem. Soc., 1994,
116, 7901.
D. M. T. Chan, K. L. Monaco, R.-P. Wang and M. P.
Winters, Tetrahedron Lett., 1998, 39, 2933.
D. A. Evans, J. L. Katz and T. R. West, Tetrahedron Lett.,
1998, 39, 2937.
29.
30.
31.
32.
33.
34.
35.
2.
3.
4.
5.
6.
7.
P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, M. P.
Winters, D. M. T. Chan and A. Combs, Tetrahedron Lett.,
1998, 39, 2941.
8.
9.
S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003,
42, 5400.
G. Evano, N. Blanchard and M. Toumi, Chem. Rev., 2008,
108, 3054.
36.
37.
10.
11.
F. Bellina and R. Rossi, Adv. Synth. Catal., 2010, 352, 1223.
J. X. Qiao and P. Y. S. Lam, in Boronic Acids, Wiley-VCH
Verlag GmbH & Co. KGaA, 2011, DOI:
10.1002/9783527639328.ch6, pp. 315.
I. P. Beletskaya and A. V. Cheprakov, Organometallics,
2012, 31, 7753.
T. R. M. Rauws and B. U. W. Maes, Chem. Soc. Rev., 2012,
41, 2463.
K. Sanjeeva Rao and T.-S. Wu, Tetrahedron, 2012, 68,
7735.
38.
39.
40.
12.
13.
14.
15.
41.
42.
L. Neuville, in Copper-Mediated Cross-Coupling Reactions,
John Wiley & Sons, Inc., 2013, DOI:
43.
44.
45.
K. Keiz, Bull. Chem. Soc. Jpn., 1959, 32, 777.
G. C. H. Chiang and T. Olsson, Org. Lett., 2004, 6, 3079.
G. W. Kabalka and L.-L. Zhou, Letters in Organic Chemistry
2006, 3, 320
10.1002/9781118690659.ch4, pp. 113.
P. Y. S. Lam, in Synthetic Methods in Drug Discovery:
Volume 1, The Royal Society of Chemistry, 2016, vol. 1,
pp. 242.
16.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins