ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Repetitive Synthetic Method for
o,o,p‑Oligophenylenes Using CꢀH Arylation
Kei Manabe* and Takeshi Kimura
School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku,
Shizuoka 422-8526, Japan
Received December 5, 2012
ABSTRACT
A synthetic method for the preparation of o,o,p-oligophenylenes has been developed. It involves Miura’s CꢀH arylation of 2-biphenols with aryl
nonaflates as the key step. Oligophenylenes with defined lengths are successfully synthesized using this method.
Oligophenylenes, which are composed of benzene rings
connected through a single bond, constitute an important
class of oligomers1 and are widely used architectures
in electronic devices2 and as self-assembling molecules,3
biologically active compounds,4 and catalytic molecules.5
However, the ability to design and synthesize oligophenylenes
with well-defined secondary structures, except for helix-
forming o-6 and m-oligophenylenes,3d in which benzene
rings are connected only at the ortho- and meta-positions,
respectively, is still in a primitive state. We seek to construct
a new type of secondary structure using the proper com-
binations of the possible connectivities (o-, m-, and p-).
Preliminary investigations of the combinations by the Merck
Molecular Force Field (MMFF) molecular mechanics
method7 revealed that o,o,p-oligophenylenes, unknown in
the literature,8 adopt a helical conformation with six benzene
units per helical turn (Figure 1; the structure was optimized
using density functional theory (DFT) calculations7,9 after a
conformational search at the MMFF level).10 This folding
structure maximizes stacking and T-shape contacts among
benzene rings and provides novel scaffolds for the develop-
ment of functional molecules. To explore the chemistry of
this oligomer, it is necessary to develop a method that enables
the efficient synthesis of oligomers with a specific chain
length and substituents at the desired positions.11 Herein,
we describe a versatile method of o,o,p-oligophenylene
(1) (a) Tour, J. M. Chem. Rev. 1996, 96, 537. (b) Berresheim, A. J.;
€
€
€
Muller, M.;Mullen,K. Chem. Rev. 1999, 99, 1747. (c) Schluter, A. D.;Bo, Z.
In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi,
E.-i., Ed.; John Wiley & Sons Ltd.: New York, 2002; p 825. (d) Grimsdale,
€
A. C.; Mullen, K. Angew. Chem., Int. Ed. 2005, 44, 5592. (e) Hoeben,
F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev.
2005, 105, 1491. (f) Tsubaki, K. Org. Biomol. Chem. 2007, 5, 2179.
€
(2) Li, C.; Liu, M.; Pschirer, N. G.; Baumgarten, M.; Mullen, K.
Chem. Rev. 2010, 110, 6817.
(3) (a) Sakai, N.; Mareda, J.; Matile, S. Acc. Chem. Res. 2005, 38, 79.
(b) Yoo, Y.-S.; Choi, J.-H.; Song, J.-H.; Oh, N.-K.; Zin, W.-C.; Park, S.;
Chang, T.; Lee, M. J. Am. Chem. Soc. 2004, 126, 6294. (c) Goto, H.;
Katagiri, H.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2006, 128,
7176. (d) Miwa, K.; Furusho, Y.; Yashima, E. Nat. Chem. 2010, 2, 444.
(4) (a) Orner, B. P.; Ernst, J. T.; Hamilton, A. D. J. Am. Chem. Soc.
2001, 123, 5382. (b) Ernst, J. T.; Kutzki, O.; Debnath, A. K.; Jiang, S.;
Lu, H.; Hamilton, A. D. Angew. Chem., Int. Ed. 2002, 41, 278.
(5) Manabe, K.; Ishikawa, S. Chem. Commun. 2008, 3829.
(6) (a) Blake, A. J.; Cooke, P. A.; Doyle, K. J.; Gair, S.; Simpkins, N. S.
Tetrahedron Lett. 1998, 39, 9093. (b) He, J.; Crase, J. L.; Wadumethrige,
S. H.; Thakur, K.; Dai, L.; Zou, S.; Rathore, R.; Hartley, C. S. J. Am.
Chem. Soc. 2010, 132, 13848. (c) Mathew, S. M.; Hartley, C. S. Macro-
molecules 2011, 44, 8425. (d) Hartley, C. S.; He, J. J. Org. Chem. 2010, 75,
8627. (e) Ohta, E.; Sato, H.; Ando, S.; Kosaka, A.; Fukushima, T.;
Hashizume, D.; Yamasaki, M.; Hasegawa, K.; Muraoka, A.; Ushiyama,
H.; Yamashita, K.; Aida, T. Nat. Chem. 2011, 3, 68. (f) Ando, S.; Ohta, E.;
Kosaka, A.; Hashizume, D.; Koshino, H.; Fukushima, T.; Aida, T. J. Am.
Chem. Soc. 2012, 134, 11084.
(7) Molecular calculations were performed using Spartan ’10,
Wavefunction, Inc., Irvine, CA.
(8) m,m,p-Oligophenylenes have been reported: (a) Diebold, C.;
Weekes, D. M.; Navarrete, M. T.; Mobian, P.; Kyritsakas, N.; Henry, M.
Eur. J. Org. Chem. 2010, 6949. A sexiphenyl with o-, m-, and
p-connectivities has been reported: (b) Nehls, B. S.; Galbrecht, F.; Bilge,
A.; Brauer, D. J.; Lehmann, C. W.; Scherf, U.; Farrell, T. Org. Biomol.
Chem. 2005, 3, 3213.
(9) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang,
W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(10) Reviews on artificial molecules with well-defined secondary
structures including helices: (a) Lehn, J.-M. Supramolecular Chemistry:
Concepts and Perspectives; VCH: Weinheim, 1995; Chapter 9, p 139.
(b) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (c) Hill, D. J.; Mio,
M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101,
3893. (d) Nakano, T.; Okamoto, Y. Chem. Rev. 2001, 101, 4013.
(e) Foldamers; Hecht, S., Huc, I., Eds.; Wiley-VCH: Weinheim, 2007.
r
10.1021/ol303327k
XXXX American Chemical Society