Journal of the American Chemical Society
Page 4 of 5
(4) (a) Wang, J.; Shen, Y.; Kessel, S.; Fernandes, P.; Yoshida, K.; Ya-
Although the details of the reaction mechanism remain to be
clarified, we consider that the good heteroselectivity is perhaps
due to the unique structure of copper complex I. It is assumed that
the electropositive bis-cation, i.e., the quaternary ammonium of
TMEDA, may trap and activate the stronger π-electron donating
alkyne (of lower acidity) via a cation-π interaction.15 The copper
center bonds to four highly electronegative atoms (Cl), and its
coordinatively saturated nature resists the π-coordination of the
C≡C triple bond to Cu, but it may favor selective ligand exchange
with an alkyne of higher acidity. Thus, the two different alkynes
could be “discriminated” by the copper center and bis-cation,
respectively.16 Compared to I, Li2CuCl4 or (Et4N)2CuCl4 provides
poor yield and selectivity, which further confirms the above sug-
gestion. In addition, the steric hindrance of both the ligand and
alkynes can affect this heteroselectivity, suggesting that it may be
another factor for the “discrimination” of two different alkynes.
gai, S.; Kurth, D. C.; Moehwald, H.; Nakanishi, T. Angew. Chem. Int. Ed.
2009, 48, 2166. (b) Ladika, M.; Fisk, T. E.; Wu, W. S. W.; Jons, S. D. J.
Am. Chem. Soc. 1994, 116, 12093. (c) Eisler, S.; Slepkov, A. D.; Elliott,
Chem. Soc. 2005, 127, 2666. (d) Tisserant, J.-N.; Hany, R.; Wimmer, E.;
Sanchez-Ferrer, A.; Adamcik, J.; Wicht, G.; Nueesch, F.; Rentsch, D.;
Borgschulte, A.; Mezzenga, R.; Heier, J. Macromolecules 2014, 47, 721.
(5) (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M.
C. Chem. Rev. 2013, 113, 6234. (b) Kenneth D. Karlin; Shinobu Itoh
Copper-Oxygen Chemistry; John Wiley & Sons, Inc.: Hoboken, New
Jersey, 2011. (c) Gwilherm Evano; Nicolas Blanchard Copper-Mediated
Cross-Coupling Reactions; John Wiley & Sons, Inc.: Hoboken, New
Jersey, 2014. (d) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew.
Chem. Int. Ed. 2000, 39, 2633. (e) Stefani, H. A.; Guarezemini, A. S.;
Cella, R. Tetrahedron 2010, 66, 7871.
(6) (a) Jia, X.; Yin, K.; Li, C.; Li, J.; Bian, H. Green Chem. 2011, 13,
2175. (b) Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizu-
no, N. Angew. Chem. Int. Ed. 2008, 47, 2407. (c) Crowley, J. D.; Goldup,
S. M.; Gowans, N. D.; Leigh, D. A.; Ronaldson, V. E.; Slawin, A. M. Z. J.
Am. Chem. Soc. 2010, 132, 6243. (d) Gao, H.-Y.; Wagner, H.; Zhong, D.;
Franke, J.-H.; Studer, A.; Fuchs, H. Angew. Chem. Int. Ed. 2013, 52, 4024.
(7) For low yields of heterocoupling of two alkynes: (a) Zhang, S.; Liu,
X.; Wang, T. Adv. Synth. Catal. 2011, 353, 1463. (b) Balamurugan, R.;
Naveen, N.; Manojveer, S.; Nama, M. V. Aust. J. Chem. 2011, 64, 567. (c)
Wong, W.-Y.; Lu, G.-L.; Choi, K.-H.; Guo, Y.-H. J. Organomet. Chem.
2005, 690, 177. (d) Navale, B. S.; Bhat, R. G. RSC Adv. 2013, 3, 5220.
(8) Good yields for crosscoupling of different aromatic alkynes have
been reported, nonetherless, the results are not repeatable. See: Liu, Y.;
Wang, C.; Wang, X.; Wan, J.-P. Tetrahedron Lett. 2013, 54, 3953.
(9) (a) Ito, A.; Cui, B.; Chavez, D.; Chai, H. B.; Shin, Y. G.; Kawanishi,
K.; Kardono, L. B.; Riswan, S.; Farnsworth, N. R.; Cordell, G. A.; Pez-
zuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 2001, 64, 246. (b) Hansen, L.;
Boll, P. M. Phytochemistry 1986, 25, 285.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In summary, we present a new copper catalysis that leads to se-
lective oxidative cross-coupling of terminal alkynes under mild
conditions, enabling the synthesis of a broad range of unsymmet-
rical aryl-aryl, aryl-alkyl and alkyl-alkyl 1,3-diynes in good to
excellent yields. Both chloroform and TMEDA are essential in-
gredients for the formation of the copper(II) catalyst I. Catalyst I
can “distinguish” two different alkynes on the basis of their dif-
ferences in intrinsic reactivity and steric hindrance, resulting in
selective heterocoupling. The present findings not only provide a
general, efficient and simple method for the preparation of un-
symmetrical 1,3-diynes and polyynes but also open a new dimen-
sion of copper catalysis.
(10) (a) Cadiot, P.; Chodkiewicz, W. Chemistry of Acetylenes; Marcel
Dekker, New York, 1969. (b) Sindhu, K. S.; Thankachan, A. P.; Sajitha, P.
S.; Anilkumar, G. Org. Biomol. Chem. 2015, 13, 6891. (c) Yu, M.; Pan,
D.; Jia, W.; Chen, W.; Jiao, N. Tetrahedron Lett. 2010, 51, 1287.
(11) (a) Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A. Org. Lett. 2009,
11, 709. (b) Suarez, J. R.; Collado-Sanz, D.; Cardenas, D. J.; Chiara, J. L.
J. Org. Chem. 2015, 80, 1098. (c) Balaraman, K.; Kesavan, V. Synthesis
2010, 3461. (d) Lampkowski, J. S.; Durham, C. E.; Padilla, M. S.; Young,
D. D. Org. Biomol. Chem. 2015, 13, 424.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and characterization data. This material
AUTHOR INFORMATION
Corresponding Authors
*E-mail: sf_yin@hnu.edu.cn.
(12) Peng, H. H.; Xi, Y. M.; Ronaghi, N.; Dong, B. L.; Akhmedov, N.
G.; Shi, X. D. J. Am. Chem. Soc. 2014, 136, 13174.
(13) Liu, P.; Hensen, E. J. M. J. Am. Chem. Soc. 2013, 135, 14032.
(14) (a) Bai, R.; Zhang, G.; Yi, H.; Huang, Z.; Qi, X.; Liu, C.; Miller, J.
T.; Kropf, A. J.; Bunel, E. E.; Lan, Y.; Lei, A. J. Am. Chem. Soc. 2014,
136, 16760. (b) Zhang, G.; Yi, H.; Zhang, G.; Deng, Y.; Bai, R.; Zhang,
H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. J. Am. Chem. Soc.
2014, 136, 924. (c) Fomina, L.; Vazquez, B.; Tkatchouk, E.; Fomine, S.
Tetrahedron 2002, 58, 6741. (d) Vilhelmsen, M. H.; Jensen, J.; Tortzen, C.
G.; Nielsen, M. B. Eur. J. Org. Chem. 2013, 701. (e) Bohlmann, F.;
Schönowsky, H.; Inhoffen, E.; Grau, G. Chem. Ber. 1964, 97, 794.
(15) Evidence for cation-π interaction with alkynes: (a) Liu, P.; Hensen,
E. J. M. J. Am. Chem. Soc. 2013, 135, 14032. (b) Nagy, E.; Germain, E. S.;
Cosme, P.; Maity, P.; Terentis, A. C.; Lepore, S. D. Chem. Commun. 2016,
52, 2311.
Author Contributions
‡ L.S. and J.D. contributed equally to this work.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Financial support by the National NSF of China (nos. 21172062,
21273066, 21273067, and 21573065) and the NSF of Hunan
Province (2016JJ1017) is appreciated. We also thank Prof. Wan-
zhi Chen (Zhejiang University) and Prof. C.T Au (HNU adjunct
professor) for their kind help.
(16) See SI for further comments on the mechanism.
REFERENCES
(1) (a) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422. (b) Hay, A. S. J.
Org. Chem. 1960, 25, 1275. (c) Hay, A. S. J. Org. Chem. 1962, 27, 3320.
(2) (a) Shi, W.; Lei, A. Tetrahedron Lett. 2014, 55, 2763. (b) Liu, J.;
Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2009, 109, 5799.
(3) (a) Yu, D. G.; de Azambuja, F.; Gensch, T.; Daniliuc, C. G.; Glori-
us, F. Angew. Chem. Int. Ed. 2014, 53, 9650. (b) Wang, L.; Yu, X.; Feng,
X.; Bao, M. Org. Lett. 2012, 14, 2418. (c) Jiang, H.; Zeng, W.; Li, Y.; Wu,
W.; Huang, L.; Fu, W. J. Org. Chem. 2012, 77, 5179. (d) Wang, L.; Yu,
X.; Feng, X.; Bao, M. J. Org. Chem. 2013, 78, 1693. (e) Shun, A.;
Tykwinski, R. R. Angew. Chem. Int. Ed. 2006, 45, 1034.
ACS Paragon Plus Environment