P. Manini et al. / Chemistry and Physics of Lipids 134 (2005) 161–171
171
9,11-octadecadienoic acid from linoleic acid by fatty acid cy-
clooxygenase. Biochim. Biophys. Acta 617, 545–547.
Hamberg, M., Hamberg, G., 1990. Hydroperoxide-dependent epox-
idation of unsaturated fatty acids in the broad bean (Vicia faba
L.). Arch. Biochem. Biophys. 283, 409–416.
Henricks, P.A., Engels, F., van der Vliet, H., Nijkamp, F.P., 1991.
9- and 13-Hydroxylinoleic acid possess chemotactic activity
for bovine polymorphonuclear leukocytes. Prostaglandins 41,
21–27.
Iwahama, T., Yoshino, Y., Keitoku, T., Sakaguchi, S., Ishii, Y.,
2000. Efficient oxidation of alcohols to carbonyl compounds with
molecularoxygencatalyzedbyN-hydroxyphthalimidecombined
with a Co species. J. Org. Chem. 65, 6502–6507.
Napolitano, A., Camera, E., Picardo, M., d’Ischia, M., 2002. Re-
actions of hydro(pero)xy derivatives of polyunsaturated fatty
acids/esters with nitrite ions under acidic conditions. Unusual ni-
trosative breakdown of methyl 13-hydro(pero)xyoctadeca-9,11-
dienoate to a novel 4-nitro-2-oximinoalk-3-enal product. J. Org.
Chem. 67, 1125–1132.
Neff, W.E., Frankel, E.N., Scholfield, C.R., Weisleder, D.,
1978. High-pressure liquid chromatography of autoxidized
lipids. I. Methyl oleate and linoleate. Lipids 13, 414–
421.
Nemann, R., Khenkin, A.M., 1997. In: Patai, S., Rapport, Z. (Eds.),
The Chemistry of Dienes and Polyenes, vol. 1, John Wiley and
Sons, New York, pp. 1916–1918.
Jira, W., Spiteller, G., 1996. Increase in hydroxy fatty acids in hu-
man low density lipoproteins with age. Chem. Phys. Lipids 84,
165–173.
Reddy, N., Everhart, A., Eling, T., Glasgow, W.C., 1997. Character-
ization of a 15-lipoxygenase in human breast carcinoma BT-20
cells: stimulation of 13-HODE formation by Tg␣/EGF. Biochem.
Biophys. Res. Commun. 231, 111–116.
Schneider, C., Tallman, K.A., Porter, N.A., Brash, A.R., 2001. Two
distinct pathways of formation of 4-hydroxynonenal. Mech-
anisms of nonenzymatic transformation of the 9- and 13-
hydroperoxides of linoleic acid to 4-hydroxyalkenals. J. Biol.
Chem. 276, 20831–20838.
Sessa, D.J., Gardner, H.W., Kleiman, R., Weisleder, D., 1977. Oxy-
genated fatty acid constituents of soybean phosphatidylcholines.
Lipids 12, 613–619.
Simon, T.C., Makheja, A.N., Bailey, J.M., 1989. The induced lipoxy-
genase in atherosclerotic aorta converts linoleic acid to the
platelet chemorepellant factor, 13-HODE. Thromb. Res. 55,
171–178.
Soberman, R.J., Harper, T.W., Betteridge, D., Lewis, R.A.,
Austin, K.F., 1985. Characterization and separation of
the arachidonic acid 5-lipoxygenase and linoleic acid 6-
lipoxygenase (arachidonic acid 15-lipoxygenase) of human
polymorphonuclear leukocytes. J. Biol. Chem. 260, 4508–
4515.
Spiteller, G., 1998. Linoleic acid peroxidation—the dominant lipid
peroxidation process in low density lipoprotein-and its rela-
tionship to chronic diseases. Chem. Phys. Lipids 95, 105–
162.
Jira, W., Spiteller, G., Richter, A., 1997. Increased levels of lipid ox-
idation products in low density lipoproteins of patients suffering
from rheumatoid arthritis. Chem. Phys. Lipids 87, 81–89.
Ku¨hn, H., 1996. Biosynthesis, metabolization and biological im-
portance of the primary 15-lipoxygenase metabolites 15-
hydro(pero)xy-5Z,8Z,11Z,13E-eicosatetraenoic acid and 13-
hydro(pero)xy-9Z,11E-octadecadienoic acid. Prog. Lipid Res.
35, 203–226.
Kuklev, D.V., Christie, W.W., Durand, T., Rossi, J.C., Vidal, J.P.,
Kasyanov, S.P., Akulin, V.N., Bezuglov, V.V., 1997. Synthesis of
keto- and hydroxydienoic compounds from linoleic acid. Chem.
Phys. Lipids 85, 125–134.
Marx, N., Bourcier, T., Sukhova, G.K., Libby, P., Plutzky, J., 1999.
PPAR␥ activation in human endothelial cells increases plasmino-
gen activator inhibitor type-1 expression-PPAR␥ as a potential
mediator in vascular disease. Arterioscler. Thromb. Vasc. Biol.
19, 546–551.
Minisci, F., Recupero, F., Cecchetto, A., Gambarotti, C., Punta, C.,
Faletti, R., Paganelli, R., Pedulli, G.F., 2004. Mechanisms of the
aerobic oxidation of alcohols to aldehydes and ketones, catalysed
under mild conditions by persistent and non-persistent nitroxyl
radicals and transition metal salts—polar, enthalpic, and captoda-
tive effects. Eur. J. Org. Chem., 109–119.
Minisci, F., Recupero, F., Pedulli, G.F., Lucarelli, M., 2003. Transi-
tion metal salts catalysis in the aerobic oxidation of organic com-
pounds. Thermochemical and kinetic aspects and new synthetic
developments in the presence of N-hydroxy-derivative catalysts.
J. Mol. Catal. A 204/205, 63–90.
Mlakar, A., Spiteller, G., 1996. Dihydroxy and hydroxyoxo fatty
acids as products of nonenzymic lipid peroxidation of polyun-
saturated fatty acids. Chem. Phys. Lipids 82, 25–32.
Nagy, L., Tontonoz, P., Alvarez, J.G.A., Chen, H., Evans, R.M., 1998.
Oxidized LDL regulates macrophage gene expression through
ligand activation of PPAR␥. Cell 93, 229–240.
Spiteller, G., 2001. Peroxidation of linoleic acid and its relation
to aging and age dependent diseases. Mech. Ageing Dev. 122,
617–657.
Spiteller, P., Spiteller, G., 1997. 9-Hydroxy-10,12-octadecadienoic
acid (9-HODE) and 13-hydroxy-9,11-octadecadienoic acid (13-
HODE): excellent markers for lipid peroxidation. Chem. Phys.
Lipids 89, 131–139.
Spiteller, P., Spiteller, G., 1998. Strong dependence of the lipid
peroxidation product spectrum whether Fe2+/O2 or Fe3+/O2
is used as oxidant. Biochim. Biophys. Acta 1392, 23–
40.