7698
F. Sarabia et al. / Tetrahedron Letters 46 (2005) 7695–7699
chain, thus alcohol 24 was transformed into aldehyde 25
by the oxidative action of TEMPO and then reacted
with the in situ generated phosphorous ylide derived
from phosphonium salt 26 by treatment with NaH-
MDS, to afford the Z olefin 27 in 42% yield over two
steps from 24. The reduction of alkene 27 to the alkane
28 was followed by the coupling of dipeptide 29, which
was carried out with EDCI and HOBt to provide com-
pound 30 in a 70% overall yield from alkene 27 (Scheme
4).
ing our previously described strategy based on a
translactonization reaction that was employed for the
synthesis of stevastelin B3 (2).
Acknowledgements
This work was financially supported by Fundacio´n Ra-
mo´n Areces and the Direccio´n General de Investigacio´n
y Cientı´fica Te´cnica (ref. CTQ2004-08141) and fellow-
´
´
ship from Fundacion Ramon Areces (S.C.). We thank
Dr. J. I. Trujillo for assistance in the preparation of this
The completion of the synthesis of stevastelin C3 (3)
was achieved according to Scheme 5 and following the
route reported by Chida. Compound 30 was prepared
for the macrocyclization reaction through a synthetic
sequence that included silyl ether deprotection (AcOH,
H2O, 31, 90%), oxidation (TEMPO and NaClO2, 32)
and Boc-cleavage (TFA) to give amino acid 33, which
was subjected to the action of DEPC under high dilution
conditions to afford the macrocyclic derivative 17 in
42% overall yield from alcohol 31. Finally, the deprotec-
tion of the benzyl ether group delivered Stevastelin C3
(3)29 in 84% yield, whose physical and spectroscopic
properties were identical to those reported for the
natural product.30
´
manuscript. We thank Unidad de Espectroscopıa de
Masas de la Universidad de Granada for mass spectro-
scopic assistance.
References and notes
´
´
1. Sarabia, F.; Chammaa, S.; Sanchez-Ruiz, A.; Martın-
´
Ortiz, L.; Lopez-Herrera, F. J. Curr. Med. Chem. 2004, 11,
1309–1332.
2. (a) Morino, T.; Masuda, A.; Yamada, M.; Nishimoto, M.;
Nishikiori, T.; Saito, S.; Shimada, N. J. Antibiot. 1994, 47,
1341–1343; (b) Morino, T.; Shimada, K.-I.; Masuda, A.;
Nishimoto, M.; Saito, S. J. Antibiot. 1996, 49, 1049–
1051.
3. (a) Morino, T.; Shimada, K.-I.; Masuda, A.; Noriyuki, Y.;
Nishimoto, M.; Nishikiori, T.; Saito, S. J. Antibiot. 1996,
49, 564–568; (b) Shimada, K.-I.; Morino, T.; Masuda, A.;
Sato, M.; Kitagawa, M.; Saito, S. J. Antibiot. 1996, 49,
569–574.
In conclusion, the chemistry described in this article pre-
sents a concise strategy for the construction of the [13]-
membered stevastelins based on transesterification and
macrolactamization processes as the key reactions, giv-
ing efficient access to stevastelin C3 (3) and complement-
4. Hamaguchi, T.; Masuda, A.; Morino, T.; Osada, H.
Chem. Biol. 1997, 4, 279–286.
5. (a) Fischer, G. In Drug Discovery from Nature; Grabley,
S., Thiericke, R., Eds.; Springer, 2000; pp 257–280,
Chapter 14; (b) Fischer, G. Angew. Chem., Int. Ed. Engl.
1994, 33, 1415–1436.
6. Sarabia, F.; Chammaa, S. J. Org. Chem. 2005, 70, ASAP
(JO0506251).
´
7. Sarabia, F.; Chammaa, S.; Garcıa-Castro, M. J. Org.
Chem. 2005, 70, ASAP (JO050628y).
´
8. Sarabia, F.; Chammaa, S.; Lopez-Herrera, F. J. Tetrahe-
dron Lett. 2002, 43, 2961–2965.
´
´
9. Sarabia, F.; Chammaa, S.; Sanchez-Ruiz, A.; Lopez-
Herrera, F. J. Tetrahedron Lett. 2003, 44, 7671–7675.
10. Kurosawa, K.; Nagase, T.; Chida, N. Chem. Commun.
2002, 1280–1281.
11. Kohyama, N.; Yamamoto, Y. Synlett 2001, 694–696.
12. Kurosawa, K.; Matsuura, K.; Chida, N. Tetrahedron Lett.
2005, 46, 389–392.
13. Chakraborty, T. K.; Ghosh, S.; Laxman, P.; Dutta, S.;
Samanta, R. Tetrahedron Lett. 2005, 46, 5447–5450.
14. Chakraborty, T. K.; Ghosh, S.; Dutta, S. Tetrahedron
Lett. 2001, 42, 5085–5088.
15. Manger, M.; Scheck, M.; Prinz, H.; von Kries, J.-P.;
Langer, T.; Saxena, K.; Schwalbe, H.; Furstner, A.;
¨
Rademann, J.; Waldmann, H. ChemBiochem, in press.
16. Enders, D.; Eichenauer, H. Chem. Ber. 1979, 112, 2933–
2960.
17. (a) Enders, D.; Tiebes, J.; De Kimpe, N.; Keppens, M.;
Stevens, C.; Smagghe, G.; Betz, O. J. Org. Chem. 1993, 58,
4881–4884; (b) Enders, D.; Plant, A.; Backhaus, D.;
Reinhold, U. Tetrahedron 1995, 51, 10699–10714.
18. (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980,
102, 5974–5976; (b) Johnson, R. A.; Sharpless, K. B. In
Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH:
Weinheim, New York, 1993; pp 103–158.
Scheme 5. Reagents and conditions: (a) AcOH/H2O, THF, 25 °C,
18 h, 90%; (b) i. 0.02 equiv TEMPO, 0.1 equiv KBr, 20.0 equiv
NaHCO3, 3.0 equiv NaClO, CH2Cl2, 0 °C, 1 h. ii. 2.5 equiv NaClO2,
2.0 equiv NaH2PO4, 100.0 equiv 2-methyl-2-butene, tBuOH/THF/
H2O, 25 °C, 1 h; (c) TFA (excess), CH2Cl2, 0 °C, 1 h; (d) 5.0 equiv
DEPC, 5.5 equiv Et3N, DMF (1.0 mM based on diol 31), 0 ! 25 °C,
42% for 17 from 31; (e) H2, 10% Pd(OH)2/C, MeOH, 25 °C, 2 h, 84%.