10.1002/chem.202003827
Chemistry - A European Journal
FULL PAPER
[6]
[7]
[8]
[9]
T. Oberhauser, The Journal of Organic Chemistry 1997, 62, 4504–
4506.
K. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi, T.
Horaguchi, Chemistry Letters 2003, 32, 932–933.
L. S. de Almeida, P. M. Esteves, M. C. S. de Mattos, Synthesis 2006,
221–223.
E. Zysman-Colman, K. Arias, J. S. Siegel, Can. J. Chem. 2009, 87,
440–447.
G. Majetich, R. Hicks, S. Reister, J. Org. Chem. 1997, 62, 4321–4326.
J. A. Vona, P. C. Merker, J. Org. Chem. 1949, 14, 1048–1050.
V. Caló, F. Ciminale, L. Lopez, P. E. Todesco, J. Chem. Soc. C 1971,
0, 3652–3653.
Electrophilic-brominating reagents are usually generated from
bromide activated by a Lewis acid, from polybrominated organic
compounds or from
a bromine atom bound to a more
electronegative atom. The methodology employed here shows
that a simple and natural salt can become a source of “positive”
bromine by the polarisation of an intermolecular halogen-halogen
interaction.
[10]
[11]
[12]
[13]
[14]
L. Lopez, G. Pesce, 1974, 2, 1189–1191.
C. Chassaing, A. Haudrechy, Y. Langlois, Tetrahedron Letters 1997,
38, 4415–4416.
Conclusion
[15]
[16]
[17]
[18]
[19]
[20]
F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. Garneau-Tsodikova, C.
T. Walsh, Chemical Reviews 2006, 106, 3364–3378.
N. Narender, P. Srinivasu, M. Ramakrishna Prasad, S. J. Kulkarni, K.
V. Raghavan, Synthetic Communications 2002, 32, 2313–2318.
N. B. Barhate, A. S. Gajare, R. D. Wakharkar, A. V. Bedekar,
Tetrahedron Letters 1998, 39, 6349–6350.
A. V. Joshi, M. Baidossi, S. Mukhopadhyay, Y. Sasson, Organic
Process Research & Development 2004, 8, 568–570.
C. Ye, J. M. Shreeve, The Journal of Organic Chemistry 2004, 69,
8561–8563.
A new methodology for the bromination of methoxy arenes was
developed in unprecedented conditions of sustainability. The
reaction was performed in a green ionic liquid, easily prepared
from melted FeCl3•6H2O and a natural salt, NaBr, without the use
of any additive. The absence of a strong oxidant, toxic solvent and
hazardous brominating agent, and the use of inexpensive and
abundant reagents made these conditions more appealing for the
bromination of aromatic compounds compared to any reported
systems. Even mild, these conditions afforded monobromo
methoxy aryl products in satisfactory yields with an excellent
regioselectivity. Mechanistic investigations revealed the formation
of Fe-anionic species, involving the challenging transformation of
sodium bromide into a brominating-electrophilic reagent. Finally,
we applied this strategy in nitration and thiocyanation of methoxy
aryl substrates, from biosourced and innocuous salts, KNO3 and
KSCN respectively. The nitro- and thiocyanato-arenes were
obtained with efficiency and without polysubstitution, indicating
the broad applicability of the methodology. The strategic design
of the methodology could lead to significant improvements in
aromatic electrophilic substitution and more broadly in green
chemistry.
S. C. Roy, C. Guin, K. K. Rana, G. Maiti, Tetrahedron Letters 2001,
42, 6941–6942.
[21]
[22]
R. Neumann, Journal of the Chemical Society 1988, 3.
C. U. Dinesh, R. Kumar, B. Pandey, P. Kumar, J. Chem. Soc., Chem.
Commun. 1995, 611–612.
U. Bora, G. Bose, M. K. Chaudhuri, S. S. Dhar, R. Gopinath, A. T.
Khan, B. K. Patel, Organic Letters 2000, 2, 247–249.
T. Moriuchi, M. Yamaguchi, K. Kikushima, T. Hirao, Tetrahedron
Letters 2007, 48, 2667–2670.
[23]
[24]
[25]
[26]
K. Kikushima, T. Moriuchi, T. Hirao, Tetrahedron Letters 2010, 51,
340–342.
K. Kikushima, T. Moriuchi, T. Hirao, Tetrahedron 2010, 66, 6906–
6911.
M. Bhattacharjee, Polyhedron 1992, 11, 2817–2818.
V. Conte, F. Di Furia, S. Moro, Tetrahedron Letters 1996, 37, 8609–
8612.
A. Podgoršek, M. Zupan, J. Iskra, Angewandte Chemie International
Edition 2009, 48, 8424–8450.
N. B. Barhate, A. S. Gajare, R. D. Wakharkar, A. V. Bedekar,
Tetrahedron Letters 1999, 55, 16.
P. V. Vyas, A. K. Bhatt, G. Ramachandraiah, A. V. Bedekar,
Tetrahedron Letters 2003, 44, 4085–4088.
S. Mukhopadhyay, S. Ananthakrishnan, S. B. Chandalia, Organic
Process Research & Development 1999, 3, 451–454.
A. Podgoršek, S. Stavber, M. Zupan, J. Iskra, Tetrahedron 2009, 65,
4429–4439.
[27]
[28]
[29]
[30]
[31]
[32]
[33]
Acknowledgements
[34]
[35]
[36]
[37]
M. Jereb, M. Zupan, S. Stavber, Chem. Commun. 2004, 2614–2615.
J. Pavlinac, M. Zupan, S. Stavber, Synthesis 2006, 2006, 2603–2607.
S. A. Cotton, Journal of Coordination Chemistry 2018, 1–29.
D. U. Nielsen, C. Lescot, T. M. Gøgsig, A. T. Lindhardt, T. Skrydstrup,
Chemistry – A European Journal 2013, 19, 17926–17938.
A. Błocka, P. Woźnicki, M. Stankevič, W. Chaładaj, RSC Adv. 2019, 9,
40152–40167.
The authors would like to thank the European Regional
Development Fun (FEDER), Klorane Botanical Foundation and
the French National Center for Scientific Research (CNRS) for
financial support. Sci-GuidEdit is acknowledged for writing
assistance and proof reading this article.
[38]
[39]
[40]
A. F. Littke, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 6989–7000.
A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020–
4028.
[41]
[42]
L. Huang, Z. Wang, J. Tan, React. Chem. Eng. 2020, 5, 921–934.
N. Öztaşkın, R. Kaya, A. Maraş, E. Şahin, İ. Gülcin, S. Göksu,
Bioorganic Chemistry 2019, 87, 91–102.
J. L. Bloomer, W. Zheng, Synthetic Communications 1998, 28, 2087–
2095.
Conflict of interest
[43]
[44]
The authors declare no conflict of interest.
D. W. Kim, H. Y. Choi, K.-J. Lee, D. Y. Chi, Org. Lett. 2001, 3, 445–
447.
[45]
[46]
[47]
S. K. Sharma, The Journal of Chemical Physics 1974, 60, 1368–1375.
S. K. Sharma, Journal of Non-Crystalline Solids 1974, 15, 83–95.
A. Saha, S. Payra, D. Dutta, S. Banerjee, ChemPlusChem 2017, 82,
1129–1134.
Keywords: Aromatic Electrophilic Substitution • Liquid Ionic •
mixed melted salts • DFT – HF calculation • sustainable
chemistry
[48]
N. Iranpoor, H. Firouzabadi, R. Azadi, Tetrahedron Letters 2006, 47,
5531–5534.
J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508–3576.
P. Wasserscheid, W. Keim, Angewandte Chemie International Edition
2000, 39, 3772–3789.
[49]
[50]
[51]
[52]
I. Persson, J Solution Chem 2018, 47, 797–805.
J. T. Szymański, Acta Crystallographica Section B 1979, 35, 1958–
1963.
M. Magini, T. Radnai, The Journal of Chemical Physics 1979, 71,
4255–4262.
[1]
D. A. Petrone, J. Ye, M. Lautens, Chemical Reviews 2016, 116, 8003–
8104.
Wiley-VCH: Weinheim, Germany 1998, Volume 1, i–xxii.
J. M. Gnaim, R. A. Sheldon, Tetrahedron Letters 2005, 46, 4465–
4468.
[53]
[54]
[2]
[3]
M. D. Lind, J. Chem. Phys. 1967, 47, 990–993.
[4]
[5]
K. Smith, D. Bahzad, Chemical Communications 1996, 467.
B. C. Ramu, D. C. Sarkar, R. Chakraborty, Synthetic Communications
1992, 22, 1095–1099.
5
This article is protected by copyright. All rights reserved.